Abstract
Rain fed granite rock basins are ancient geological landforms of worldwide distribution and structural simplicity. They support habitats that can switch quickly from terrestrial to aquatic along the year. Diversity of animals and plants, and the connexion between communities in different basins have been widely explored in these habitats, but hardly any research has been carried out on microorganisms. The aim of this study is to provide the first insights on the diversity of eukaryotic microbial communities from these environments. Due to the ephemeral nature of these aquatic environments, we predict that the granitic basins should host a high proportion of dormant microeukaryotes. Based on an environmental DNA diversity survey, we reveal diverse communities with representatives of all major eukaryotic taxonomic supergroups, mainly composed of a diverse pool of low abundance OTUs. Basin communities were very distinctive, with alpha and beta diversity patterns non-related to basin size or spatial distance respectively. Dissimilarity between basins was mainly characterised by turnover of OTUs. The strong microbial eukaryotic heterogeneity observed among the basins may be explained by a complex combination of deterministic factors (diverging environment in the basins), spatial constraints, and randomness including founder effects. Most interestingly, communities contain organisms that cannot coexist at the same time because of incompatible metabolic requirements, thus suggesting the existence of a pool of dormant organisms whose activity varies along with the changing environment. These organisms accumulate in the pools, which turns granitic rock into high biodiversity microbial islands whose conservation and study deserve further attention.
This is a preview of subscription content, log in to check access.







Change history
23 December 2019
The original version of this article contained an erratum of omission in the Acknowledgments section.
References
- 1.
Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992. https://doi.org/10.1038/nature05202
- 2.
Zubkov MV, Tarran GA (2008) High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature 455:224–226. https://doi.org/10.1038/nature07236
- 3.
Weisse T, Anderson R, Arndt H, Calbet A, Hansen PJ, Montagnes DJS (2016) Functional ecology of aquatic phagotrophic protists – concepts, limitations, and perspectives. Eur. J. Protistol. 55:50–74. https://doi.org/10.1016/j.ejop.2016.03.003
- 4.
Field CB, Behrenfeld MJ, Randerson JT, Falkowski PG (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240. https://doi.org/10.1126/science.281.5374.237
- 5.
Esteban GF, Finlay BJ, Warren A (2015) Free-living protozoa. In: Thorp JH, Rogers DC (eds) Freshwater invertebrates: ecology and general biology4th edn. Academic Press, San Diego, pp 113–132Thorp and Covich’s
- 6.
Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545. https://doi.org/10.1038/nature12901
- 7.
Lennon J, Jones S (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Rev Microbiol 9:119–130. https://doi.org/10.1038/nrmicro2504
- 8.
Martiny JBH, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreås L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nature Rev Microbiol 4:102–112. https://doi.org/10.1038/nrmicro1341
- 9.
Grattepanche JD, Santoferrara LF, McManus GB, Katz LA (2014) Diversity of diversity: conceptual and methodological differences in biodiversity estimates of eukaryotic microbes as compared to bacteria. Trends Microbiol. 22:432–437. https://doi.org/10.1016/j.tim.2014.04.006
- 10.
Debroas D, Domaizon I, Humbert JF, Jardillier L, Lepere C, Oudart A, Tai N (2017) Overview of freshwater microbial eukaryotes diversity: a first analysis of publicly available metabarcoding data. FEMS Microbiol. Ecol. 93(4). https://doi.org/10.1093/femsec/fix023
- 11.
Pompanon F, Coissac E, Taberlet P (2011) Metabarcoding a new way to analyze biodiversity. Biofutur 30:30–32
- 12.
Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4(7):e6372. https://doi.org/10.1371/journal.pone.0006372
- 13.
Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner HW, Richards TA (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19:21–31. https://doi.org/10.1111/j.1365-294X.2009.04480.x
- 14.
Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, Bowser SS, Cepicka I, Decelle J, Dunthorn M, Fiore-Donno AM, Gile GH, Holzmann M, Jahn R, Jirků M, Keeling PJ, Kostka M, Kudryavtsev A, Lara E, Lukeš J, Mann DG, Mitchell EA, Nitsche F, Romeralo M, Saunders GW, Simpson AG, Smirnov AV, Spouge JL, Stern RF, Stoeck T, Zimmermann J, Schindel D, de Vargas C (2012) CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 10(11):e1001419. https://doi.org/10.1371/journal.pbio.1001419
- 15.
Caron DA, Hu SK (2019) Are we overestimating protistan diversity in nature? Trends Microbiol. 27(3):197–205. https://doi.org/10.1016/j.tim.2018.10.009
- 16.
de Vargas S, Audic N, Henry J et al (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605. https://doi.org/10.1126/science.1261605
- 17.
del Campo J, Guillou L, Hehenberger E, Logares R, López-García P, Massana R (2016) Ecological and evolutionary significance of novel protist lineages. Eur. J. Protistol. 55:4–11. https://doi.org/10.1016/j.ejop.2016.02.002
- 18.
Logares R, Mangot JF, Massana R (2015) Rarity in aquatic microbes: placing protists on the map. Res. Microbiol. 166:831–841. https://doi.org/10.1016/j.resmic.2015.09.009
- 19.
Green JL, Holmes AJ, Westoby M, Oliver I, Briscoe D, Dangerfield M, Gillings M, Beattie AJ (2004) Spatial scaling of microbial eukaryote diversity. Nature 432:747–750. https://doi.org/10.1038/nature03034
- 20.
Lepère C, Domaizon I, Taïb N, Mangot JF, Bronner G, Boucher D, Debroas D (2013) Geographic distance and ecosystem size determine the distribution of smallest protists in lacustrine ecosystems. FEMS Microbiol. Ecol. 85:85–94. https://doi.org/10.1111/1574-6941.12100
- 21.
Wu B, Tian J, Bai C, Xiang M, Sun J, Liu X (2013) The biogeography of fungal communities in wetland sediments along the Changjiang River and other sites in China. ISME J l7:1299–1309. https://doi.org/10.1038/ismej.2013.29
- 22.
Barreto DP, Conrad R, Klose M, Claus P, Enrich-Prast A (2014) Distance-decay and taxa-area relationships for bacteria, archaea and methanogenic archaea in a tropical lake sediment. PLoS One 9(10):e110128. https://doi.org/10.1371/journal.pone.0110128
- 23.
Hendershot JN, Read QD, Henning JA, Sanders NJ, Classen AT (2017) Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology 98:1757–1763. https://doi.org/10.1002/ecy.1829
- 24.
Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol. Lett. 7(12):1225–1241. https://doi.org/10.1111/j.1461-0248.2004.00684.x
- 25.
Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton
- 26.
Coleman BD (1981) Random placement and species–area relations. Math. Biosci. 54:191–215
- 27.
Boileau MG, Hebert PDN, Schwartz SS (1992) Nonequilibrium gene frequency divergence: persistent founder effects in natural populations. J. Evol. Biol. 5:25–39
- 28.
Reith F, Zammit CM, Pohrib R, Gregg AL, Wakelin SA (2015) Geogenic factors as drivers of microbial community diversity in soils overlying polymetallic deposits. Appl. Environ. Microbiol. 81:7822–7832. https://doi.org/10.1128/AEM.01856-15
- 29.
Simon M, Jardillier L, Deschamps P, Moreira D, Restoux G, Bertolino P, López-García P (2015) Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems. Environ. Microbiol. 17:3610–3627. https://doi.org/10.1111/1462-2920.12591
- 30.
Simon M, Lopez-Garcia P, Deschamps P et al (2015) Marked seasonality and high spatial variability of protist communities in shallow freshwater systems. ISME J 9:1941–1953. https://doi.org/10.1038/ismej.2015.6
- 31.
Sisson C, Gulla-Devaney B, Katz LA, Grattepanche JD (2018) Seed bank and seasonal patterns of the eukaryotic SAR (Stramenopila, Alveolata and Rhizaria) clade in a New England vernal pool. J. Plankton Res. 40:376–390. https://doi.org/10.1093/plankt/fby020
- 32.
Twidale CR (1982) Granite landforms. Elsevier Scientific Publishing Company, Amsterdam, 359 pp
- 33.
Brendonck L, Lanfranco S, Timms B, Vanschoenwinkel B (2016) Invertebrates in rock pools. In: Batzer D, Boix D (eds) Invertebrates in freshwater wetlands. Springer International Publishing, Cham, pp 25–53
- 34.
Jocque M, Vanschoenwinkel B, Brendonck L (2010) Freshwater rock pools: a review of habitat characteristics, faunal diversity and conservation value. Freshw. Biol. 55:1587–1602. https://doi.org/10.1111/j.1365-2427.2010.02402.x
- 35.
Anusa A, Ndagurwa HGT, Magadza CHD (2012) The influence of pool size on species diversity and water chemistry in temporary rock pools on Domboshawa Mountain, northern Zimbabwe. Afr. J. Aquat. Sci. 37(1):89–99. https://doi.org/10.2989/16085914.2012.666378
- 36.
Reed GB, Klugh AB (1924) The correlation between hydrogen-ion concentration and the biota of granite and limestone pools. Ecology 5:272–275
- 37.
Pinder AM, Halse SA, Shiel RJ, McRae JM (2000) Granite outcrop pools in south-western Australia: foci of diversification and refugia for aquatic invertebrates. J. R. Soc. West. Aust. 83:149–161
- 38.
Rylander K (2011) Protists and invertebrates in temporary pools on enchanted rock, Llano County, Texas: 1965 and 2010. The Free Library. Texas Academy of Science. https://www.thefreelibrary.com/Protists+and+invertebrates+in+temporary+pools+on+Enchanted+Rock%2c...-a0382319889. Accessed 9 Dec 2016
- 39.
Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, Singer D, Mayor J, Bunge J, Sernaker S, Siemensmeyer T, Trautmann I, Romac S, Berney C, Kozlov A, Mitchell EAD, Seppey CVW, Egge E, Lentendu G, Wirth R, Trueba G, Dunthorn M (2017) Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol 1:0091. https://doi.org/10.1038/s41559-017-0091
- 40.
IGME (2017) Mapa Geológico Nacional. Instituto Geológico y Minero de España http://info.igme.es/visorweb/ Accessed 20 June 2018
- 41.
García-Rodríguez M, Gómez-Heras M, Álvarez de Buergo M, Fort R, Aroztegui J (2015) Polygonal cracking associated to vertical and subvertical fracture surfaces in granite (La Pedriza del Manzanares, Spain): considerations for a morphological classification. J. Iber. Geol. 41(3):365–383. https://doi.org/10.5209/rev_JIGE.2015.v41.n3.48860
- 42.
Domínguez Villar D (2007) Análisis morfométrico de pilancones: consideraciones genéticas, evolutivas y paleoambientales. Dissertation 336 pp. UCM. Madrid
- 43.
Hadziavdic K, Lekang K, Lanzen A, Jonassen I, Thompson EM, Troedsson C (2014) Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS One 9:e87624. https://doi.org/10.1371/journal.pone.0087624
- 44.
Schiaffino MR, Lara E, Fernández L, Balagué V, Singer D, Seppey CW, Massana R, Izaguirre I (2016) Microbial eukaryote communities exhibit robust biogeographical patterns along a gradient of Patagonian and Antarctic lakes. Environ. Microbiol. 18(12):5249–5264. https://doi.org/10.1111/1462-2920.13566
- 45.
Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3):443–453
- 46.
Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, de Vargas C, Decelle J, del Campo J, Dolan JR, Dunthorn M, Edvardsen B, Holzmann M, Kooistra WH, Lara E, le Bescot N, Logares R, Mahé F, Massana R, Montresor M, Morard R, Not F, Pawlowski J, Probert I, Sauvadet AL, Siano R, Stoeck T, Vaulot D, Zimmermann P, Christen R (2013) The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41:597–604. https://doi.org/10.1093/nar/gks1160
- 47.
Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M (2014) Swarm: robust and fast clustering method for amplicon-based studies. Peer J 2:e593. https://doi.org/10.7717/peerj.593
- 48.
Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11:265–270
- 49.
Gotelli NJ, Colwell RK (2011) Estimating species richness. In: Magurran AE, McGill BJ (eds) Frontiers in measuring biodiversity. Oxford University Press, New York, pp 39–54
- 50.
Simpson EH (1949) Measurements of diversity. Nature 163:688. https://doi.org/10.1038/163688a0
- 51.
Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana
- 52.
Pielou EC (1966) The measurement of diversity in different types of biological collection. J. Theor. Biol. 13:131–144
- 53.
Oksanen F, Blanchet G, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2015) Community ecology package version 2.3-1. Date 2015-09-24. 285 pp
- 54.
Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19(1):134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x
- 55.
Baselga A (2013) Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 4:552–557. https://doi.org/10.1111/2041-210X.12029
- 56.
Gómez-Rodríguez C, Baselga A (2018) Variation among European beetle taxa in patterns of distance decay of similarity suggests a major role of dispersal processes. Ecography 41:1–10. https://doi.org/10.1111/ecog.03693
- 57.
Fontaneto D, Eckert EM, Anicic N, Lara E, Mitchell EAD (2019) We are ready for faunistic surveys of bdelloid rotifers through DNA barcoding: the example of Sphagnum bogs of the Swiss Jura Mountains. Limnetica 38:213–225. https://doi.org/10.23818/limn.38.02
- 58.
Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, del Campo J, Dunthorn M, Edvardsen B, Eglit Y, Guillou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karnkowska A, Karpov S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJG, Lara E, le Gall L, Lynn DH, Mann DG, Massana R, Mitchell EAD, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Rueckert S, Shadwick L, Shimano S, Spiegel FW, Torruella G, Youssef N, Zlatogursky V, Zhang Q (2019) Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66(1):4–119. https://doi.org/10.1111/jeu.12691
- 59.
Simon M, Lopez-Garcıa P, Deschamps P, Restoux G, Bertolino P, Moreira D, Jardillier L (2016) Resilience of freshwater communities of small microbial eukaryotes undergoing severe drought events. Front. Microbiol. 7:812. https://doi.org/10.3389/fmicb.2016.00812
- 60.
Brendonck L, Jocque M, Hulsmans A, Vanschoenwinkel B (2010) Pools ‘on the rocks’: freshwater rock pools as model system in ecological and evolutionary research. Limnetica 29:25–40
- 61.
Meier S, Soininen J (2014) Phytoplankton metacommunity structure in subarctic rock pools. Aquat. Microb. Ecol. 73:81–91. https://doi.org/10.3354/ame01711
- 62.
Bengtsson J, Ebert D (1998) Distributions and impacts of microparasites on Daphnia in a rock pool metapopulation. Oecologia 115:213–221. https://doi.org/10.1007/s004420050510
- 63.
Bass D, Cavalier-Smith T (2004) Phylum-specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa). Int. J. Syst. Evol. Microbiol. 54:2393–2404. https://doi.org/10.1099/ijs.0.63229-0
- 64.
Fiore-Donno AM, Rixen C, Rippin M, Glaser K, Samolov E, Karsten U, Becker B, Bonkowski M (2018) New barcoded primers for efficient retrieval of cercozoan sequences in high-throughputenvironmental diversity surveys, with emphasis on world-wide biological soil crusts. Mol. Ecol. Resour. 18(2):229–239. https://doi.org/10.1111/1755-0998.12729
- 65.
Harder CB, Rønn R, Brejnrod A, Bass D, Al-Soud WA, Ekelund F (2016) Local diversity of heathland Cercozoa explored by in-depth sequencing. ISME J 10:2488–2497. https://doi.org/10.1038/ismej.2016.31
- 66.
Howe AT, Bass D, Vickerman K, Chao EE, Cavalier-Smith T (2009) Phylogeny, taxonomy, and astounding genetic diversity of Glissomonadida ord. nov., the dominant gliding Zooflagellates in soil (Protozoa: Cercozoa). Protist 160:159–189. https://doi.org/10.1016/j.protis.2008.11.007
- 67.
Ekelund F (1996) Growth kinetics of five common heterotrophic soil flagellates. Eur. J. Soil Biol. 32:15–24
- 68.
Hess S, Melkonian M (2013) The mystery of clade X: Orciraptor gen. nov and Viridiraptor gen. nov are highly specialised, algivorous amoeboflagellates (Glissomonadida, Cercozoa). Protist 164:706–747. https://doi.org/10.1016/j.protis.2013.07.003
- 69.
Seppey CVW, Singer D, Dumack K, Fournier B, Belbahri L, Mitchell EAD, Lara E (2017) Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling. Soil Biol. Biochem. 112:68–76. https://doi.org/10.1016/j.soilbio.2017.05.002
- 70.
Beyond the human eye. http://beyondthehumaneye.blogspot.com/2009/07/ Accessed 20 th June 2019
- 71.
Kaštovský J (2008) A report of Stephanosphaera pluvialis COHN 1852 (Chlorophyta, Chlamydophyceae). Fottea 8:109–110. https://doi.org/10.5507/fot.2008.006
- 72.
Saad JF, Schiaffino MR, Vinocur A, O'Farrell I, Tell G, Izaguirre I (2013) Microbial planktonic communities of freshwater environments from Tierra del Fuego: dominant trophic strategies in lakes with contrasting features. J. Plankton Res. 35:1220–1233. https://doi.org/10.1093/plankt/fbt075
- 73.
Correll D (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J. Environ. Qual. 27:261–266
- 74.
Carlson RE (1977) A trophic state index for lakes. Limnol. Oceanogr. 22:361–369. https://doi.org/10.4319/lo.1977.22.2.0361
- 75.
Kolodziej K, Stoeck T (2007) Cellular identification of a novel uncultured marine stramenopile (MAST-12 clade) small-subunit rRNA gene sequence from a Norwegian estuary by use of fluorescence in situ hybridization-scanning electron microscopy. Appl. Environ. Microbiol. 73(8):2718–2726. https://doi.org/10.1128/AEM.02158-06
- 76.
Lara E, Mitchell EAD, Moreira D, López-García P (2011) Highly diverse and seasonally dynamic protist community in a pristine peat bog. Protist 162:14–32. https://doi.org/10.1016/j.protis.2010.05.003
- 77.
Massana R, del Campo J, Sieracki ME, Audic S, Logares R (2014) Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME J 8:854–866. https://doi.org/10.1038/ismej.2013.204
- 78.
Bernard C, Simpson AGB, Patterson DJ (2000) Some free-living flagellates (Protista) from anoxic habitats. Ophelia 52:113–142. https://doi.org/10.1080/00785236.1999.10409422
- 79.
Lara E, Acosta-Mercado D (2012) A molecular perspective on ciliates as soil bioindicators. Eur. J. Soil Biol. 49:107–111. https://doi.org/10.1016/j.ejsobi.2011.11.001
- 80.
Bourland W, Rotterová J, Čepička I (2018) Morphologic and molecular characterization of Brachonella pulchra (Kahl, 1927) comb. nov. (Armophorea, Ciliophora) with comments on cyst structure and formation. Int. J. Syst. Evol. Microbiol. 68(9):3052–3065. https://doi.org/10.1099/ijsem.0.002888
- 81.
Galand PE, Casamayor EO, Kirchman DL, Love JC (2009) Ecology of the rare microbial biosphere of the Arctic Ocean. Proc. Natl. Acad. Sci. U. S. A. 106(52):22427–22432. https://doi.org/10.1073/pnas.0908284106
- 82.
Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored rare biosphere. Proc. Natl. Acad. Sci. U. S. A. 103:12115–12120. https://doi.org/10.1073/pnas.0605127103
- 83.
Dunthorn M, Stoeck T, Clamp J, Warren A, Mahé F (2014) Ciliates and the rare biosphere: a review. J. Eukaryot. Microbiol. 61:404–409. https://doi.org/10.1111/jeu.12121
- 84.
Debroas D, Hugoni M, Domaizon I (2015) Evidence for an active rare biosphere within freshwater protists community. Mol. Ecol. 24:1236–1247. https://doi.org/10.1111/mec.13116
- 85.
Weisse T (2014) Ciliates and the rare biosphere – community ecology and population dynamics. J. Eukaryot. Microbiol. 61(4):419–433. https://doi.org/10.1111/jeu.12123
- 86.
Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Küsel K, Rillig MC, Rivett DW, Salles JF, van der Heijden M, Youssef NH, Zhang X, Wei Z, Hol WH (2017) Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J 11:853–862. https://doi.org/10.1038/ismej.2016.174
- 87.
Pillet L, Fontaine D, Pawlowski J (2012) Intra-genomic ribosomal RNA polymorphism and morphological variation in Elphidium macellum suggests inter-specific hybridization in foraminifera. PLoS One 7:e32373. https://doi.org/10.1371/journal.pone.0032373
- 88.
Kudryavtsev A, Gladkikh A (2017) Two new species of Ripella (Amoebozoa, Vannellida) and unusual intragenomic variability in the SSU rRNA gene of this genus. Eur. J. Protistol. 61:92–106. https://doi.org/10.1016/j.ejop.2017.09.003
- 89.
Miranda LN, Zhuang YY, Zhang H, Lin S (2012) Phylogenetic analysis guided by intragenomic SSU rDNA polymorphism refines classification of “Alexandrium tamarense” species complex. Harmful Algae 16:35–48. https://doi.org/10.1016/j.hal.2012.01.002
- 90.
Ganley ARD, Kobayashi T (2007) Highly efficient concerted evolution in the ribosomal DNA repeats: Total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res. 17:184–191. https://doi.org/10.1101/gr.5457707
- 91.
De Meester L, Declerck S, Stoks R, Louette G, Van De Meutter F, De Bie T, Michels E, Brendonck L (2005) Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquat. Conserv. 15:715–725. https://doi.org/10.1002/aqc.748
- 92.
Brendonck L, De Meester L, Riddoch BJ (2000) Regional structuring of genetic variation in short-lived rock pool populations of Branchipodopsis wolfi (Crustacea: Anostraca). Oecologia 123:506–515
- 93.
Sassenhagen I, Wilken S, Godhe A, Rengefors K (2015) Phenotypic plasticity and differentiation in an invasive freshwater microalga. Harmful Algae 41:38–45. https://doi.org/10.1016/j.hal.2014.11.001
- 94.
Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems4th edn. Blackwell Publishing Ltd., p 750
- 95.
Ren H, Yuan X, Yue J, Wang X, Liu H (2016) Potholes of mountain river as biodiversity spots: structure and dynamics of the benthic invertebrate community. Pol. J. Ecol. 64(1):70–83. https://doi.org/10.3161/15052249pje2016.64.1.007
- 96.
Soininen J, Luoto M (2012) Is catchment productivity a useful predictor of taxa richness in lake plankton communities? Ecol. Appl. 22:624–633. https://doi.org/10.1890/11-1126.1
- 97.
Therriault TW, Kolasa J (2001) Desiccation frequency reduces species diversity and predictability of community structure in coastal rock pools. Isr J Zool 47(4):477–489
- 98.
Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26:867–878. https://doi.org/10.1046/j.1365-2699.1999.00305.x
Acknowledgements
Permits to collect samples and facilities provided by The Parque Nacional Sierra de Guadarrama are gratefully acknowledged.
Funding
This study was funded by Ministerio de Economía y Competitividad (MINECO-Spain), Project MICROEPICS (Ref: CGL2013-40851-P/ BOS 2014-2018; PI: MM-C). EL was funded by a project “Atraccion de talento investigador” by the Consejería de Educación, Juventud y Deporte, Comunidad de Madrid (Spain) 2017-T1/AMB-5210 and by a grant from the Swiss National Foundation for Research SNF 31003A_143960.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Additional information
Enrique Lara and Mercedes Martin-Cereceda share last co-authorship
Rights and permissions
About this article
Cite this article
Velasco-González, I., Sanchez-Jimenez, A., Singer, D. et al. Rain-Fed Granite Rock Basins Accumulate a High Diversity of Dormant Microbial Eukaryotes. Microb Ecol 79, 882–897 (2020). https://doi.org/10.1007/s00248-019-01463-y
Received:
Accepted:
Published:
Issue Date:
Keywords
- Granite rock basins
- Microbial reservoirs
- Protists
- Fungi
- Dormancy
- Conservation