Skip to main content

Advertisement

Log in

Oceanic Microplankton Do Not Adhere to the Latitudinal Diversity Gradient

  • Note
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

A latitudinal biodiversity gradient has captivated ecologists for years, and has become a widely recognized pattern in biogeography, manifest as an increase in biodiversity from the poles to the tropics. Oceanographers have attempted to discern whether these distribution patterns are shared with marine biota, and a lively debate has emerged concerning the global distribution of microbes. Limitations in sampling resolution for such large-scale assessments have often prohibited definitive conclusions. We evaluated microbial planktonic communities along a ~ 15,400-km Pacific Ocean transect with DNA from samples acquired every 2 degrees of latitude within a 3-month period between late August and early November 2003. Next-generation sequencing targeting the Bacteria, Archaea, and Eukarya yielded ~ 10.8 million high-quality sequences. Beta-analysis revealed geographic patterns of microbial communities, primarily the Bacteria and Archaea domains. None of the domains exhibited a unimodal pattern of alpha-diversity with respect to latitude. Bacteria communities increased in richness from Arctic to Antarctic waters, whereas Archaea and Eukarya communities showed no latitudinal or polar trends. Based on our analyses, environmental factors related to latitude thought to influence various macrofauna may not define microplankton diversity patterns of richness in the global ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Data Availability

Data that support the findings of this study have been deposited in GenBank (project accession number (PRJNA390314). Sample site environmental data is additionally listed in Appendix A. Sample site accession numbers for each domain are listed in Appendix B.

References

  1. Williamson M (1997) Marine biodiversity in its global context. Marine Biodiversity: Patterns and Processes. Cambridge University Press, Cambridge

    Google Scholar 

  2. Gaucherel C, Tramier C, Devictor V, Svenning JC, Hély C (2018) Where and at which scales does the latitudinal diversity gradient fail? J Biogeogr 45:1905–1916

    Article  Google Scholar 

  3. Gaston KJ, Blackburn TM (2000) Pattern and process in macroecology. Blackwell Science, Oxford

    Book  Google Scholar 

  4. Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65:514–527

    Article  Google Scholar 

  5. Atlas RM, Bartha R (1993) Microbial ecology: fundamentals and applications. Benjamin/Cummings, Redwood City

    Google Scholar 

  6. Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    Article  CAS  Google Scholar 

  7. Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063. https://doi.org/10.1126/science.1070710

    Article  CAS  PubMed  Google Scholar 

  8. Finlay BJ, Fenchel T (2004) Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist 155:237–244. https://doi.org/10.1078/143446104774199619

    Article  PubMed  Google Scholar 

  9. Hanson CA, Fuhrman JA, Hormer-Devine MC, Martiny JB (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 7:497–506

    Article  Google Scholar 

  10. Rossello-Mora R, Amann R (2015) Past and future species definitions for bacteria and archaea. Syst Appl Microbiol 38:209–216

    Article  Google Scholar 

  11. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sullivan MB, Edwards R, Brito BR, Chisholm SW (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503

    Article  CAS  Google Scholar 

  12. Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99:10494–10499

    Article  CAS  Google Scholar 

  13. Huber JA, Welch DB, Morrison HG, Huse SM, Neal PR, Butterfield DA, Sogin ML (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100

    Article  CAS  Google Scholar 

  14. Ghiglione J-F, Galand PE, Pommier T, Pedrós-Alió C, Maas EW, Bakker K, Bertilson S, Kirchman DL, Loverjoy C, Yager PL, Murray AE (2012) Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci 109:17633–17638

    Article  CAS  Google Scholar 

  15. Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DB, Martiny JB, Sogin M, Boetius A, Ramette A (2011) Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One 6:e24570. https://doi.org/10.1371/journal.pone.0024570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hayden BP, Ray GC, Dolan R (1984) Classification of coastal and marine environments. Environ Conserv 11:199–207

    Article  Google Scholar 

  17. Raes J, Letunic I, Yamada T, Jensen LJ, Bork P (2011) Toward molecular trait based ecology through integration of biogeochemical, geographical and metagenomic data. Mol Syst Biol 7:473

    Article  Google Scholar 

  18. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G et al (2015) Structure and function of the global ocean microbiome. Science 348:6237

    Article  Google Scholar 

  19. Hernando-Morales V, Ameneiro J, Teira E (2017) Water mass mixing shapes bacterial biogeography in a highly hydrodynamic region of the Southern Ocean. Environ Microbiol 19:1017–1029. https://doi.org/10.1111/1462-2920.13538

    Article  CAS  PubMed  Google Scholar 

  20. Galand PE, Lovejoy C, Hamilton AK, Ingram RG, Pedneault E, Carmack EC (2009) Archaeal diversity and a gene for ammonia oxidation are coupled to oceanic circulation. Environ Microbiol 11:971–980

    Article  Google Scholar 

  21. Foissner W (2008) Protist diversity and distribution: some basic considerations. Biodivers Conserv 17:345–363

    Article  Google Scholar 

  22. Strass VH, Garabato AC, Pollard RT, Fischer HI, Hense I, Allen JT, Read JF, Leach H, Smetacek V (2002) Mesoscale frontal dynamics: shaping the environment of primary production in the Antarctic Circumpolar Current. Deep Sea II 49:3735–3769

    Article  CAS  Google Scholar 

  23. Milici M, Tomasch J, Wos-Oxley ML, Wang H, Jáuregui R, Camarinha-Silva A, Deng ZL, Plumeier I, Giebel HA, Wurst M, Pieper DH, Simon M, Wagner-Döbler I (2016) Low diversity of planktonic bacteria in the tropical ocean. Scientific Reports6

  24. Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Schwalbach MS, Brown MV, Green JL, Brown JH (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci 105:7774–7778

    Article  CAS  Google Scholar 

  25. Pommier T, Canbäck B, Riemann L, Boström KH, Simu K, Lundberg P, Tunlid A, Hagström A (2007) Global patterns of diversity and community structure in marine bacterioplankton. Mol Ecol 16:867–880

    Article  CAS  Google Scholar 

  26. Green J, Bohannan BJM (2006) Spatial scaling of microbial biodiversity. Trends Ecol Evol 21:501–507

    Article  Google Scholar 

  27. Bunse C, Pinhassi J (2017) Marine bacterioplankton seasonal succession dynamics. Trends Microbiol 25:494–505

    Article  CAS  Google Scholar 

  28. Chaudhary C, Saeedi H, Costello MJ (2016) Bimodality of latitudinal gradients in marine species richness. Trends Ecol Evol 31:670–676

    Article  Google Scholar 

  29. Brayard A, Escarguel G, Bucher H (2005) Latitudinal gradient of taxonomic richness: combined outcome of temperature and geographic mid-domains effects? J Zool Syst Evol Res 43:178–188

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Caporaso for his assistance in data analysis.

Funding

This research was originally supported by a NSF award OPP0127022 to WHJ.

Author information

Authors and Affiliations

Authors

Contributions

JAM, RAS, and WHJ designed experiments; JAM, JDP, and NH collected samples and analyzed data. JAM, RAS, and WHJ wrote manuscript.

Corresponding author

Correspondence to Wade H. Jeffrey.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 23 kb)

ESM 2

(DOCX 26 kb)

ESM 3

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moss, J.A., Henriksson, N.L., Pakulski, J.D. et al. Oceanic Microplankton Do Not Adhere to the Latitudinal Diversity Gradient. Microb Ecol 79, 511–515 (2020). https://doi.org/10.1007/s00248-019-01413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01413-8

Keywords

Navigation