Advertisement

Phosphorus Input Alters the Assembly of Rice (Oryza sativa L.) Root-Associated Communities

  • Xi-En Long
  • Huaiying YaoEmail author
Plant Microbe Interactions

Abstract

Rice root–associated microbial community play an important role in plant nutrient acquisition, biomass production, and stress tolerance. Herein, root-associated community assembly was investigated under different phosphate input levels in phosphorus (P)-deficient paddy soil. Rice was grown in a long-term P-depleted paddy soil with 0 (P0), 50 (PL), or 200 (PH) mg P2O5 kg−1 application. DNA from root endophytes was isolated after 46 days, and PCR amplicons from archaea, bacteria, and fungi were sequenced by an Illumina Miseq PE300 platform, respectively. P application had no significant effect on rice root endophytic archaea, which were dominated by ammonia-oxidizing Candidatus Nitrososphaera. By contrast, rice root endophytic community structure of the bacteria and fungi was affected by soil P. Low P input increased endophytic bacterial diversity, whereas high P input increased rhizosphere fungi diversity. Bacillus and Pleosporales, associated with phosphate solubilization and P uptake, dominated in P0 and PH treatments, and Pseudomonas were more abundant in the PL treatment than in the P0 and PH treatments. Co-occurrence network analysis revealed a close interaction between endophytic bacteria and fungi. Soil P application affected both the rice root endosphere and soil rhizosphere microbial community and interaction between rice root endophytic bacteria, and fungi, especially species related to P cycling.

Keywords

Network analysis, Phosphate input, Rice (Oryza sativa L.), Root associated, Endophytic community 

Notes

Acknowledgments

We appreciate Prof. Wenxue Wei (the Institute of Subtropical Agriculture, CAS) for the assistance with soil sampling and Dr. Jun Xiong (Fujian Agriculture and Forestry University) for the help with endophytic DNA extraction.

Funding Information

This work was supported by the National Natural Science Foundation of China (41525002, 41773079) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15020303).

Supplementary material

248_2019_1407_MOESM1_ESM.pdf (9.8 mb)
ESM 1 (PDF 10070 kb)
248_2019_1407_MOESM2_ESM.xlsx (71 kb)
ESM 2 (XLSX 71 kb)
248_2019_1407_MOESM3_ESM.csv (24 kb)
ESM 3 (CSV 23 kb)
248_2019_1407_MOESM4_ESM.xlsx (677 kb)
ESM 4 (XLSX 677 kb)

References

  1. 1.
    Arora J, Ramawat KG (2017) An introduction to endophytes. In: Maheshwari DK (ed) Endophytes: biology and biotechnology, vol 1. Springer International Publishing, Cham, pp 1–23Google Scholar
  2. 2.
    Hardoim PR, van Overbeek LS, Berg G, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320.  https://doi.org/10.1128/MMBR.00050-14 CrossRefGoogle Scholar
  3. 3.
    Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798.  https://doi.org/10.1016/j.chembiol.2012.06.004 CrossRefGoogle Scholar
  4. 4.
    Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471.  https://doi.org/10.1016/j.tim.2008.07.008 CrossRefGoogle Scholar
  5. 5.
    Lamb TG, Tonkyn DW, Kluepfel DA (1996) Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J Microbiol 42:1112–1120.  https://doi.org/10.1139/m96-143 CrossRefGoogle Scholar
  6. 6.
    Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750.  https://doi.org/10.3732/ajb.1200572 CrossRefGoogle Scholar
  7. 7.
    Jain P, Pundir RK (2017) Potential role of endophytes in sustainable agriculture-recent developments and future prospects. In: Maheshwari DK (ed) Endophytes: biology and biotechnology, vol 1. Springer International Publishing, Cham, pp 145–169CrossRefGoogle Scholar
  8. 8.
    Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S, van der Lelie D, Gilbert JA, Jansson JK (2015) The soil microbiome influences grapevine-associated microbiota. mBio 6:e02527–e02514.  https://doi.org/10.1128/mBio.02527-14 CrossRefGoogle Scholar
  9. 9.
    Liu YL, Ge TD, Zhu ZK, Liu SL, Luo Y, Li Y, Wang P, Gavrichkova O, Xu XL, Wang JK, Wu JS, Guggenberger G, Kuzyakov Y (2019) Carbon input and allocation by rice into paddy soils: a review. Soil Biol Biochem 133:97–107.  https://doi.org/10.1016/j.soilbio.2019.02.019 CrossRefGoogle Scholar
  10. 10.
    Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6:e14823.  https://doi.org/10.1371/journal.pone.0014823 CrossRefGoogle Scholar
  11. 11.
    Zhang XX, Gao JS, Cao YH, Ma XT, He JZ (2013) Long-term rice and green manure rotation alters the endophytic bacterial communities of the rice root. Microb Ecol 66:917–926.  https://doi.org/10.1007/s00248-013-0293-1 CrossRefGoogle Scholar
  12. 12.
    Hardoim PR, Andreote FD, Reinhold-Hurek B, Sessitsch A, van Overbeek LS, Van Elsas JD (2011) Rice root-associated bacteria: insights into community structures across 10 cultivars. FEMS Microbiol Ecol 77:154–164.  https://doi.org/10.1111/j.1574-6941.2011.01092.x CrossRefGoogle Scholar
  13. 13.
    Wei XM, Zhu ZK, Wei L, Wu JH, Ge TD (2019) Biogeochemical cycles of key elements in the paddy-rice rhizosphere: microbial mechanisms and coupling processes. Rhizosphere 10:100145.  https://doi.org/10.1016/j.rhisph.2019.100145 CrossRefGoogle Scholar
  14. 14.
    Wu XH, Ge TD, Yan WD, Zhou J, Wei XM, Chen L, Chen XB, Nannipieri P, Wu JS (2017) Irrigation management and phosphorus addition alter the abundance of carbon dioxide-fixing autotrophs in phosphorus-limited paddy soil. FEMS Microbiol Ecol 93:fix154.  https://doi.org/10.1093/femsec/fix154 Google Scholar
  15. 15.
    Wei X, Hu Y, Peng P, Zhu ZK, Atere CT, O’Donnell AG, Wu JS, Ge TD (2017) Effect of P stoichiometry on the abundance of nitrogen-cycle genes in phosphorus-limited paddy soil. Biol Fertil Soils 53:767–776.  https://doi.org/10.1007/s00374-017-1221-1 CrossRefGoogle Scholar
  16. 16.
    Long XE, Yao HY, Huang Y, Wei WX, Zhu YG (2018) Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilising microbial community in a paddy soil. Soil Biol Biochem 118:103–114.  https://doi.org/10.1016/j.soilbio.2017.12.014 CrossRefGoogle Scholar
  17. 17.
    Li YY, Pan FX, Yao HY (2019) Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application. J Soils Sediments 19:1948–1958.  https://doi.org/10.1007/s11368-018-2192-z CrossRefGoogle Scholar
  18. 18.
    Bruce A, Smith SE, Tester M (1994) The development of mycorrhizal infection in cucumber: effects of P supply on root growth, formation of entry points and growth of infection units. New Phytol 127:507–514.  https://doi.org/10.1111/j.1469-8137.1994.tb03968.x CrossRefGoogle Scholar
  19. 19.
    Sylvia DM, Neal LH (1990) Nitrogen affects the phosphorus response of VA mycorrhiza. New Phytol 115:303–310.  https://doi.org/10.1111/j.1469-8137.1990.tb00456.x CrossRefGoogle Scholar
  20. 20.
    Sun L, Qiu FB, Zhang XX, Dai X, Dong XZ, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424.  https://doi.org/10.1007/s00248-007-9287-1 CrossRefGoogle Scholar
  21. 21.
    Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinf 27:863–864.  https://doi.org/10.1093/bioinformatics/btr026 CrossRefGoogle Scholar
  22. 22.
    Zhang J, Kobert K, Flouri T, Stamatakis A (2013) PEAR: a fast and accurate Illumina Paired-End reAd merger. Bioinf 30:614–620.  https://doi.org/10.1093/bioinformatics/btt593 CrossRefGoogle Scholar
  23. 23.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefGoogle Scholar
  24. 24.
    Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235.  https://doi.org/10.1128/AEM.71.12.8228-8235.2005 CrossRefGoogle Scholar
  25. 25.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Steven MHH, Wagner H (2014) Vegan: Community Ecology Package R package version 22-0 https://CRANR-project.org/package=vegan
  26. 26.
    Friedman J, Alm EJ (2012) Inferring correlation networks from genomic survey data. PLoS Comput Biol 8:e1002687.  https://doi.org/10.1371/journal.pcbi.1002687 CrossRefGoogle Scholar
  27. 27.
    Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. In: Hamacher M, Eisenacher M, Stephan C (eds) Data mining in proteomics: from standards to applications. Humana Press, Totowa, pp 291–303CrossRefGoogle Scholar
  28. 28.
    Morris JH, Apeltsin L, Newman AM, Baumbach J, Wittkop T, Su G, Bader GD, Ferrin TE (2011) clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinf 12:436.  https://doi.org/10.1186/1471-2105-12-436 CrossRefGoogle Scholar
  29. 29.
    Su G, Kuchinsky A, Morris JH, States DJ, Meng F (2010) GLay: community structure analysis of biological networks. Bioinf 26:3135–3137.  https://doi.org/10.1093/bioinformatics/btq596 CrossRefGoogle Scholar
  30. 30.
    Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E Stat Nonlinear Soft Matter Phys 69:026113.  https://doi.org/10.1103/PhysRevE.69.026113 CrossRefGoogle Scholar
  31. 31.
    Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2011) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25:28–36.  https://doi.org/10.1094/MPMI-08-11-0204 CrossRefGoogle Scholar
  32. 32.
    Chen XP, Zhu YG, Xia Y, Shen JP, He JZ (2008) Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environ Microbiol 10:1978–1987.  https://doi.org/10.1111/j.1462-2920.2008.01613.x CrossRefGoogle Scholar
  33. 33.
    Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg G (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138.  https://doi.org/10.3389/fmicb.2015.00138 CrossRefGoogle Scholar
  34. 34.
    Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33:855–869.  https://doi.org/10.1111/j.1574-6976.2009.00179.x CrossRefGoogle Scholar
  35. 35.
    Tang YQ, Zhang XY, Li DD, Wang HM, Chen FS, Fu XL, Fang XM, Sun XM, Yu GR (2016) Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations. Soil Biol Biochem 103:284–293.  https://doi.org/10.1016/j.soilbio.2016.09.001 CrossRefGoogle Scholar
  36. 36.
    Großkopf R, Stubner S, Liesack W (1998) Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 64:4983–4989Google Scholar
  37. 37.
    Ahn JH, Song J, Kim BY, Kim MS, Joa JH, Weon HY (2012) Characterization of the bacterial and archaeal communities in rice field soils subjected to long-term fertilization practices. J Microbiol 50:754–765.  https://doi.org/10.1007/s12275-012-2409-6 CrossRefGoogle Scholar
  38. 38.
    Goux X, Calusinska M, Fossépré M, Benizri E, Delfosse P (2016) Start-up phase of an anaerobic full-scale farm reactor-Appearance of mesophilic anaerobic conditions and establishment of the methanogenic microbial community. Bioresour Technol 212:217–226.  https://doi.org/10.1016/j.biortech.2016.04.040 CrossRefGoogle Scholar
  39. 39.
    Winkel M, Mitzscherling J, Overduin PP, Horn F, Winterfeld M, Rijkers R, Grigoriev MN, Knoblauch C, Mangelsdorf K, Wagner D, Liebner S (2018) Anaerobic methanotrophic communities thrive in deep submarine permafrost. Sci Rep 8:1291.  https://doi.org/10.1038/s41598-018-19505-9 CrossRefGoogle Scholar
  40. 40.
    Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A 112:E911–E920.  https://doi.org/10.1073/pnas.1414592112 CrossRefGoogle Scholar
  41. 41.
    Wang WF, Zhai YY, Cao LX, Tan HM, Zhang RD (2016) Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L). Microbiol Res 188–189:1–8.  https://doi.org/10.1016/j.micres.2016.04.009 CrossRefGoogle Scholar
  42. 42.
    Hameed A, Yeh MW, Hsieh YT, Chung WC, Lo CT, Young LS (2015) Diversity and functional characterization of bacterial endophytes dwelling in various rice (Oryza sativa L) tissues, and their seed-borne dissemination into rhizosphere under gnotobiotic P-stress. Plant Soil 394:177–197.  https://doi.org/10.1007/s11104-015-2506-5 CrossRefGoogle Scholar
  43. 43.
    Okunishi S, Sako K, Mano H, Imamura A, Morisaki H (2005) Bacterial flora of endophytes in the maturing seed of cultivated rice (Oryza sativa). Microbes Environ 20:168–177.  https://doi.org/10.1264/jsme2.20.168 CrossRefGoogle Scholar
  44. 44.
    Wei XM, Hu YJ, Razavi BS, Zhou J, Shen JL, Nannipieri P, Wu JH, Ge TD (2019) Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization. Soil Biol Biochem 131:62–70.  https://doi.org/10.1016/j.soilbio.2018.12.025 CrossRefGoogle Scholar
  45. 45.
    Walia A, Guleria S, Chauhan A, Mehta P (2017) Endophytic bacteria: role in phosphate solubilization. In: Maheshwari DK, Annapurna K (eds) Endophytes: crop productivity and protection, vol 2. Springer International Publishing, Cham, pp 61–93CrossRefGoogle Scholar
  46. 46.
    Panhwar QA, Radziah O, Naher UA, Zaharah AR, Sariah M (2012) Root colonization and association of phosphate-solubilizing bacteria at various levels of triple supper phosphate in aerobic rice seedlings. Afr J Microbiol Res 6:2277–2286.  https://doi.org/10.5897/AJMR11.916 CrossRefGoogle Scholar
  47. 47.
    Naher UA, Radziah O, Halimi MS, Shamsuddin ZH, Mohd Razi I (2008) Effect of inoculation on root exudates carbon sugar and amino acids production of different rice varieties. Res J Microbiol 3:580–587 https://scialert.net/abstract/?doi=jm.2008.580.587 CrossRefGoogle Scholar
  48. 48.
    Vallino M, Greppi D, Novero M, Bonfante P, Lupotto E (2009) Rice root colonisation by mycorrhizal and endophytic fungi in aerobic soil. Ann Appl Biol 154:195–204.  https://doi.org/10.1111/j.1744-7348.2008.00286.x CrossRefGoogle Scholar
  49. 49.
    Panneerselvam P, Kumar U, Sugitha TCK, Parameswaran C, Sahoo S, Binodh AK, Jahan A, Anandan A (2017) Arbuscular mycorrhizal fungi (AMF) for sustainable rice production. In: Adhya TK, Mishra BB, Annapurna K et al (eds) Advances in soil microbiology: recent trends and future prospects, vol 2. Soil-Microbe-Plant Interaction Springer Singapore, Singapore, pp 99–126CrossRefGoogle Scholar
  50. 50.
    Pili NN, França SC, Kyndt T, Makumba BA, Skilton R, Höfte M, Mibey RK, Gheysen G (2016) Analysis of fungal endophytes associated with rice roots from irrigated and upland ecosystems in Kenya. Plant Soil 405:371–380.  https://doi.org/10.1007/s11104-015-2590-6 CrossRefGoogle Scholar
  51. 51.
    Potshangbam M, Devi SI, Sahoo D, Strobel GA (2017) Functional characterization of endophytic fungal community associated with Oryza sativa L and Zea mays L. Front Microbiol 8:325.  https://doi.org/10.3389/fmicb.2017.00325 CrossRefGoogle Scholar
  52. 52.
    Vergara C, Araujo KEC, Alves LS, Souza SR, Santos LA, Santa-Catarina C, Silva K, Pereira GMD, Xavier GR, Zilli JÉ (2018) Contribution of dark septate fungi to the nutrient uptake and growth of rice plants. Braz J Microbiol 49:67–78.  https://doi.org/10.1016/j.bjm.2017.04.010 CrossRefGoogle Scholar
  53. 53.
    Liu M, Liu J, Chen XF, Jiang CY, Wu M, Li ZP (2018) Shifts in bacterial and fungal diversity in a paddy soil faced with phosphorus surplus. Biol Fertil Soils 54:259–267.  https://doi.org/10.1007/s00374-017-1258-1 CrossRefGoogle Scholar
  54. 54.
    Tian XL, Cao LX, Tan HM, Zeng QG, Jia YY, Han WQ, Zhou SN (2004) Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World J Microbiol Biotechnol 20:303–309.  https://doi.org/10.1023/B:WIBI.0000023843.83692.3f CrossRefGoogle Scholar
  55. 55.
    Freedman ZB, Zak DR (2015) Atmospheric N deposition alters connectance, but not functional potential among saprotrophic bacterial communities. Mol Ecol 24:3170–3180.  https://doi.org/10.1111/mec.13224 CrossRefGoogle Scholar
  56. 56.
    Chadha N, Prasad R, Varma A (2015) Plant promoting activities of fungal endophytes associated with tomato roots from central Himalaya, India and their interaction with Piriformospora indica. Int J Pharm Bio Sci 6:343–333Google Scholar
  57. 57.
    Firrincieli A, Otillar R, Salamov A, Schmutz J, Khan Z, Redman RS, Fleck ND, Lindquist E, Grigoriev IV, Doty SL (2015) Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Front Microbiol 6:978.  https://doi.org/10.3389/fmicb.2015.00978 CrossRefGoogle Scholar
  58. 58.
    Hernández M, Dumont MG, Yuan Q, Conrad R (2015) Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Appl Environ Microbiol 81:2244–2253.  https://doi.org/10.1128/AEM.03209-14 CrossRefGoogle Scholar
  59. 59.
    Green LE, Porras-Alfaro A, Sinsabaugh RL (2008) Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol 96:1076–1085.  https://doi.org/10.1111/j.1365-2745.2008.01388.x CrossRefGoogle Scholar
  60. 60.
    Shabanamol S, Divya K, George TK, Rishad KS, Sreekumar TS, Jisha MS (2018) Characterization and in planta nitrogen fixation of plant growth promoting endophytic diazotrophic Lysinibacillus sphaericus isolated from rice (Oryza sativa). Physiol Mol Plant Pathol 102:46–54.  https://doi.org/10.1016/j.pmpp.2017.11.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
  2. 2.School of Geographic SciencesNantong UniversityNantongChina
  3. 3.Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological EngineeringWuhan Institute of TechnologyWuhanChina

Personalised recommendations