Skip to main content

Advertisement

Log in

Alterations in the Endophyte-Enriched Root-Associated Microbiome of Rice Receiving Growth-Promoting Treatments of Urea Fertilizer and Rhizobium Biofertilizer

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We examined the bacterial endophyte–enriched root-associated microbiome within rice (Oryza sativa) 55 days after growth in soil with and without urea fertilizer and/or biofertilization with a growth-promotive bacterial strain (Rhizobium leguminosarum bv. trifolii E11). After treatment to deplete rhizosphere/rhizoplane communities, washed roots were macerated and their endophyte-enriched communities were analyzed by 16S ribosomal DNA 454 amplicon pyrosequencing. This analysis clustered 99,990 valid sequence reads into 1105 operational taxonomic units (OTUs) with 97% sequence identity, 133 of which represented a consolidated core assemblage representing 12.04% of the fully detected OTU richness. Taxonomic affiliations indicated Proteobacteria as the most abundant phylum (especially α- and γ-Proteobacteria classes), followed by Firmicutes, Bacteroidetes, Verrucomicrobia, Actinobacteria, and several other phyla. Dominant genera included Rheinheimera, unclassified Rhodospirillaceae, Pseudomonas, Asticcacaulis, Sphingomonas, and Rhizobium. Several OTUs had close taxonomic affiliation to genera of diazotrophic rhizobacteria, including Rhizobium, unclassified Rhizobiales, Azospirillum, Azoarcus, unclassified Rhizobiaceae, Bradyrhizobium, Azonexus, Mesorhizobium, Devosia, Azovibrio, Azospira, Azomonas, and Azotobacter. The endophyte-enriched microbiome was restructured within roots receiving growth-promoting treatments. Compared to the untreated control, endophyte-enriched communities receiving urea and/or biofertilizer treatments were significantly reduced in OTU richness and relative read abundances. Several unique OTUs were enriched in each of the treatment communities. These alterations in structure of root-associated communities suggest dynamic interactions in the host plant microbiome, some of which may influence the well-documented positive synergistic impact of rhizobial biofertilizer inoculation plus low doses of urea-N fertilizer on growth promotion of rice, considered as one of the world’s most important food crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anyia AO, Archambault DJ, Becquer CJ, Slaski (2009) Plant growth-promoting diazotrophs and productivity of wheat on the Canadian prairies. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement, pp. 287–300. DOI: https://doi.org/10.1007/978-3-642-01979-1_14

    Google Scholar 

  2. Asanuma S, Tanaka H, Yatazawa M (1979) Rhizoplane microorganisms of rice seedlings as examined by scanning electron microscopy. Soil Sci Plant Nutr 25:539–551

    Google Scholar 

  3. Bertani I, Abbruscato P, Piffanelli P, Subramoni S, Venturi V (2016) Rice bacterial endophytes: isolation of a collection, identification of beneficial strains, and microbiome analysis. Environ Microbiol Rep 8:388–398

    CAS  PubMed  Google Scholar 

  4. Biswas J, Ladha JK, Dazzo FB (2000a) Rhizobia inoculation improves nutrient uptake and growth in lowland rice. Soil Sci Soc Amer J 64:1644–1650

    CAS  Google Scholar 

  5. Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000b) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886

    Google Scholar 

  6. Boddey RM, Urquiaga S, Alves BJR, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149

    CAS  Google Scholar 

  7. Brower JC, Kile K (1988) Seriation of an original data matrix as applied to palaeoecology. Lethaia 21:79–93

    Google Scholar 

  8. Chen WWM, Chang YL, Sheu SY (2010) Investigating antimicrobial activity in Rheinheimera sp. due to hydrogen peroxide generated by l-lysine oxidase activity. Enzyme Microbial Activity 46:487–493

    CAS  Google Scholar 

  9. Chen L, Luo S, Chen J, Wan Y, Li X, Liu C, Liu F (2014) A comparative analysis of endophytic bacterial communities associated with hyperaccumulators growing in mine soils. Environ Sci Pollut Res 21:7538–7547

    CAS  Google Scholar 

  10. Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia from roots to leaves inside rice plants and assessment of their benefits to the growth physiology of rice. Appl Environ Microbiol 71:7271–7278

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chi F, Yang PF, Han F, Jing YX, Shen SH (2010) Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics 10:1861–1874

    CAS  PubMed  Google Scholar 

  12. Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 352:169–175

    Google Scholar 

  13. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    CAS  PubMed  Google Scholar 

  14. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42(Database issue):D633–D642. https://doi.org/10.1093/nar/gkt1244

    Article  CAS  PubMed  Google Scholar 

  15. Dazzo FB, Niccum B (2015) Use of CMEIAS image analysis software to accurately compute attributes of cell size, morphology, spatial aggregation and color segmentation that signify in situ ecophysiological adaptations in microbial biofilm communities. Computation 3:72–98

    Google Scholar 

  16. Dong Y, Iniguez AL, Triplett EW (2003) Quantitative assessments of the host range and strain specificity of endophytic colonization by Klebsiella pneumoniae 342. Plant Soil 257:49–59

    CAS  Google Scholar 

  17. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. https://doi.org/10.1093/bioinformatics/btr381

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A:E911–E920. https://doi.org/10.1073/pnas.1414592112

    CAS  Google Scholar 

  19. Edwards J, Santos-Medellin C, Liechty Z, Nguyen B, Lurie E, Eason S, Philips G, Sundaresan V (2018) Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. https://doi.org/10.1371/journal.pbio.2003862

    PubMed  PubMed Central  Google Scholar 

  20. Fernandez A, Hashsham S, Dollhopf S, Raskin L, Glagoleva O, Dazzo FB, Hickey R, Tiedje JM, Criddle CS (2000) Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol 66:4058–4067

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gdanetz K, Trail F (2017) The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes J 1:158–168

    Google Scholar 

  22. Gupta G, Panwar J, Akhtar M, Jha P (2012) Endophytic nitrogen-fixing bacteria as biofertilizer. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 11. Springer, Netherlands, pp 183–221

    Google Scholar 

  23. Gutiérrez-Zamora ML, Martínez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126

    PubMed  Google Scholar 

  24. Hallmann J, Quadt-Hallmann A, Mahaffee W, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    CAS  Google Scholar 

  25. Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  26. Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD (2012a) Dynamics of seed-borne rice endophytics on early plant growth stages. PLoS One 7:e30438

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hardoim P, Nissinen R, van Elsas J (2012b) Ecology of bacterial endophytics in sustainable agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin Heidelberg, pp 97–126

    Google Scholar 

  28. Hashsham S, Fernandez A, Dollhopf S, Dazzo FB, Hickey R, Tiedje JM, Criddle CS (2000) Parallel processing of substrate correlates with greater functional stability in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol 66:4050–4057

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Heip CH, Herman PM, Soetaert K (1998) Indices of diversity and evenness. Oceanis 24:61–87

    Google Scholar 

  30. Hofmann A, Fischer D, Hartmann A, Schmid M (2014) Colonization of plants by human pathogenic bacteria in the course of organic vegetable production. Front Microbiol 5(191):1–11. https://doi.org/10.3389/fmicb.2014.00191

    Article  Google Scholar 

  31. Holben N (2018) You are what you can find to eat: bacterial metabolism in the rhizosphere. In: Schikora A (ed) Plant-microbe interactions in the rhizosphere. Chapter 1, 7. Caister Academic Press, Julius Kühn-Institut, Braunschweig, Germany, pp 1–17

    Google Scholar 

  32. Ikeda S, Sasaki K, Okubo T, Yamashita A, Terasawa K, Bao Z, Liu D, Watanabe T, Murase J, Asakawa S, Eda S, Mitsui H, Sato T, Minamisawa K (2014) Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions. Microbes Environ 29:50–59

    PubMed  PubMed Central  Google Scholar 

  33. Iniguez AL, Dong Y, Carter HD, Ahmer BM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defense. Mol. Plant-Microbe Interactions 18:169–178

    CAS  Google Scholar 

  34. Jackman SC, Lee H, Trevors JT (1992) Survival, detection and containment of bacteria. Microb Releases 1:125–154

    Google Scholar 

  35. James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209

    Google Scholar 

  36. Jha B, Thakur MC, Gontia I, Albrecht V, Stoffels M, Schmid M, Hartmann A (2009) Isolation, partial identification and application of diazotrophic rhizobacteria from traditional Indian rice cultivars. Eur J Soil Biol 45:62–72

    CAS  Google Scholar 

  37. Jha PN, Gupta G, Jha P, Mehrotra R (2013) Association of rhizospheric/endophytic bacteria with plants: a potential gateway to sustainable agriculture. Greener J Agric Sci 3:073–084

    Google Scholar 

  38. Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236

    CAS  PubMed  Google Scholar 

  39. Lambshead PJD, Shaw KM, Platt HM (1983) The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J Nat Hist 17:859–874

    Google Scholar 

  40. Legendre P, Legendre L (2012) Numerical ecology 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  41. Lopes AR, Manaia CM, Nunes OC (2014) Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing. FEMS Microbiol Ecol 87:650–663

    CAS  PubMed  Google Scholar 

  42. Lu Y, Conrad R (2005) In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science 309:1088–1090

    CAS  PubMed  Google Scholar 

  43. Lupwayi NZ, Clayton GW, Hanson KG, Rice WA, Biederbeck VO (2004) Endophytic rhizobia in barley, wheat and canola roots. Can J Plant Sci 84:37–45

    Google Scholar 

  44. Magurran A (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Google Scholar 

  45. Magurran A (2004) Measuring biological diversity. Blackwell Pub, Malden

    Google Scholar 

  46. Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S, Benhizia Y, Benhizia H, Benguedouar A, Mori B, Calamassi R, Dazzo FB, Squartini A (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63:383–400

    CAS  PubMed  Google Scholar 

  47. Muthukumar A, Udhayakumar R and Naveenkumar R (2017) Role of bacterial endophytes in plant disease control. In: Maheshwari D, Annapurna K (ed) Endophytes: crop productivity and protection, sustainable development and biodiversity 16. DOI: https://doi.org/10.1007/978-3-319-66544-3_7

    Google Scholar 

  48. Muthukumarasamy R, Kang UG, Park KD, Jeon W-T, Park CY, Cho YS, Kwon S-W, Song J, Roh D-H, Revathi G (2007) Enumeration, isolation and identification of diazotrophs from Korean wetland rice varieties grown with long-term application of N and compost and their short-term inoculation effect on rice plants. J Appl Microbiol 102:981–991

    CAS  PubMed  Google Scholar 

  49. Nacamulli C, Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L (1997) Perturbation of maize rhizosphere microflora following seed bacterization with Burkholderia cepacia MCI 7. FEMS Microbiol Ecol 23:183–193

    CAS  Google Scholar 

  50. Nawrock EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of RNA alignments. Bioinformatics 25:1335–1337

    Google Scholar 

  51. Orr CH, James A, Leifert C, Cooper JM, Cummings SP (2011) Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils. Appl Environ Microbiol 77:911–919

    CAS  PubMed  Google Scholar 

  52. Patil GP, Taillie C (1979) An overview of diversity. In: Grassle JF, Patil GP, Smith W, Taillie C (eds) Ecological diversity in theory and practice. International Cooperative Publishing House, Fairland, pp 3–27

    Google Scholar 

  53. Presta L, Bosi E, Fondi M, Maida I, Perrin E, Miceli E, Maggini V, Bogani P, Firenzuoli F, Pilato VD, Rossolini GM, Mengoni A, Fani R (2017) Phenotypic and genotypic characterization of the antimicrobial producer Rheinheimera sp. EpRS3 isolated from the medicinal plant Echinacea purpurea: insight into its biotechnological relevance. Res Microbiol 168:293–305

    CAS  PubMed  Google Scholar 

  54. Puri A., Padda KP, Chanway CP (2018) Nitrogen-fixation by endophytic bacteria in agricultural crops: recent advances. In: Khan A, Fahad S, (eds) Nitrogen in agriculture. InTech Publisher, chpt 5. pp. 73–94

  55. Reinhold-Hurek B, Hurek T (2000) Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int. J Systematics & Evolutionary Microbiology 50:649–659

    CAS  Google Scholar 

  56. Rényi A (1961) On measures of entropy and information. In: Neyman J (ed) Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, vol 1. University of California Press, Oakland, pp 547–561

    Google Scholar 

  57. Roberts A and Withers P (2018) StatistiXL, version 1.10. Broadway-Nedlands: Kalamunda, Australia.

  58. Rovira A, Newman E, Bowen H, Campbell R (1974) Quantitative assessment of the rhizoplane microflora by direct microscopy. Soil Biol Biochem 6:211–216

    Google Scholar 

  59. Sasaki K, Ikeda S, Ohkubo T, Kisara C, Sato T, Minamisawa K (2013) Effects of plant genotype and nitrogen level on bacterial communities in rice shoots and roots. Microbes Environ 28:391–395

    PubMed  PubMed Central  Google Scholar 

  60. Schmidt H, Eickhorst T (2014) Detection and quantification of native microbial populations on soil-grown rice roots by catalyzed reporter deposition-fluorescence in situ hybridization. FEMS Microbiol Ecol 87:390–402

    CAS  PubMed  Google Scholar 

  61. Seaby RM, Henderson PA (2007) Species diversity and richness. Version 4.1.2.1554. Pisces Conservation Ltd, Pennington www.pisces-conservation.com

    Google Scholar 

  62. Seaby RM, Henderson PA (2014) Community analysis package; version 5.3.3.472. Pisces Conservation Ltd, Pennington www.pisces-conservation.com

    Google Scholar 

  63. Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophytic community colonizing rice roots as revealed by metagenomic analysis. Molec Plant-Microbe Interactions 25:28–36

    CAS  Google Scholar 

  64. Shade A, Hogan S, Klimowicz AK, Linske M, McManus PS, Handelsman J (2012) Culturing captures members of the soil rare biosphere. Environ Microbiol 14:2247–2252

    PubMed  PubMed Central  Google Scholar 

  65. Sharma S, Gupta R, Dugar G, Srivastava A (2012) Impact of application of biofertilizers on soil structure and resident microbial community structure and function. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin Heidelberg, pp 65–77

    Google Scholar 

  66. Shi Y, Yang H, Zhang T, Sun J, Lou K (2014) Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Appl Microbiol Biotechnol 98:6375–6385

    CAS  PubMed  Google Scholar 

  67. Shrestha PM, Kube M, Reinhardt R, Liesack W (2009) Transcriptional activity of paddy soil bacterial communities. Environ Microbiol 11:960–970

    CAS  PubMed  Google Scholar 

  68. Solow AR (1993) A simple test for change in community structure. J Anim Ecol 62:191–193

    Google Scholar 

  69. Stoltzfus JR, So R, Malarvithi PP, Ladha JK, de Bruijn FJ (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36

    CAS  Google Scholar 

  70. Suarez C, Ratering S, Geissler-Plaum R, Schnell S (2014) Rheinheimera hassiensis sp. nov. and Rheinheimera muenzenbergensis sp. nov., two species from the rhizosphere of Hordeum secalinum. Int J Syst Evol Microbiol 64:1202–1209

    CAS  PubMed  Google Scholar 

  71. Sul WJ, Cole JR, Jesus ED, Wang Q, Farris RJ, Fish JA, Tiedje JM (2011) Bacterial community comparisons by taxonomy-supervised analysis independent of sequence alignment and clustering. Proc Natl Acad Sci U S A 108:14637–14642

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424

    CAS  PubMed  Google Scholar 

  73. Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5:1009–1015

    CAS  PubMed  Google Scholar 

  74. Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177:1414–1417

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Vincent JM (1970) A manual for the practical study of the root-nodule bacteria, IBP Handbook No. 15. Blackwell Scientific Publications, Oxford

    Google Scholar 

  76. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Warwick R, Clarke K, and Somerfield PJ (2008) K-dominance curves. In: Encyclopedia of ecology. Elsevier, pp. 2055–2057

  78. Wu Q, Peng X, Yang M, Dazzo FB, Uphoff N, Jing Y, Shen S (2018) Rhizobia promote the growth of rice shoots by targeting cell signaling, division and expansion. Plant Mol Biol 97:507–523

    CAS  PubMed  Google Scholar 

  79. Yanni Y, Dazzo FB (2010) Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile Delta. Plant Soil 336:129–142

    CAS  Google Scholar 

  80. Yanni Y, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, de Bruijn F, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    CAS  Google Scholar 

  81. Yanni YG, Rizk RY, El-Fattah FKA, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth RI, Martinez-Molina E, Mateos P, Velazquez E, Wopereis J, Triplett E, Umali-Garcia M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Ng PK, Dazzo FB (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Funct Plant Biol 28:845–870

    CAS  Google Scholar 

  82. Zhang X, Sun L, Oiu F, McLean RC, Jiang R, Song W (2008) Rheinheimera tangshanensis sp. nov., a rice root-associated bacterium. Int J Syst Evol Microbiol 58:2420–2424

    CAS  PubMed  Google Scholar 

  83. Zhang X-X, Gao J-S, Cao Y-H, Ma X-T, He J-Z (2013) Long-term rice and green manure rotation alters the endophytic bacterial communities of the rice root. Microb Ecol 66:917–926

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Terrance Marsh for the helpful revisions to the manuscript.

Funding

This work was supported by the National Science Foundation grant INT 0211267, US-Egypt Science & Technology Fund BIO10-001-011 Contract/Agreement No. 303, US-Egypt Science & Technology Joint Fund 3852 (58-3148-1-140), US Department of Energy Office of Biological and Environmental Research grant DE-FG02-99ER62848, the Michigan AgBioResearch program, and University Grant Commission No. F-5 20/2013[IC], India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank B. Dazzo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

The sequence data discussed in this publication have been disposed in NCBI’s Sequence Read Archive (SRA) and are accessible through BioProject accession PRJNA526033.

Electronic Supplementary Materials

ESM 1

(PDF 75 kb)

ESM 2

(XLSX 55 kb)

ESM 3

(XLSX 149 kb)

ESM 4

(XLSX 10 kb)

ESM 5

(PDF 112 kb)

ESM 6

(PDF 115 kb)

ESM 7

(XLSX 19 kb)

ESM 8

(PDF 177 kb)

ESM 9

(XLSX 23 kb)

ESM 10

(PDF 100 kb)

ESM 11

(PDF 155 kb)

ESM 12

(PDF 71 kb)

ESM 13

(XLSX 10 kb)

ESM 14

(PDF 33 kb)

ESM 15

(PDF 34 kb)

ESM 16

(PDF 30 kb)

ESM 17

(PDF 50 kb)

ESM 18

(XLSX 10 kb)

ESM 19

(PDF 85 kb)

ESM 20

(XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, P.N., Gomaa, AB., Yanni, Y.G. et al. Alterations in the Endophyte-Enriched Root-Associated Microbiome of Rice Receiving Growth-Promoting Treatments of Urea Fertilizer and Rhizobium Biofertilizer. Microb Ecol 79, 367–382 (2020). https://doi.org/10.1007/s00248-019-01406-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01406-7

Keywords

Navigation