Skip to main content

Advertisement

Log in

Ecological Processes Shaping Bulk Soil and Rhizosphere Microbiome Assembly in a Long-Term Amazon Forest-to-Agriculture Conversion

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Forest-to-agriculture conversion has been identified as a major threat to soil biodiversity and soil processes resilience, although the consequences of long-term land use change to microbial community assembly and ecological processes have been often neglected. Here, we combined metagenomic approach with a large environmental dataset, to (i) identify the microbial assembly patterns and, (ii) to evaluate the ecological processes governing microbial assembly, in bulk soil and soybean rhizosphere, along a long-term forest-to-agriculture conversion chronosequence, in Eastern Amazon. We hypothesized that (i) microbial communities in bulk soil and rhizosphere have different assembly patterns and (ii) the weight of the four ecological processes governing assembly differs between bulk soil and rhizosphere and along the chronosequence in the same fraction. Community assembly in bulk soil fitted most the zero-sum multinomial (ZSM) neutral-based model, regardless of time. Low to intermediate dispersal was observed. Decreasing influence of abiotic factors was counterbalanced by increasing influence of biotic factors, as the chronosequence advanced. Undominated ecological processes of dispersal limitation and variable selection governing community assembly were observed in this soil fraction. For soybean rhizosphere, community assembly fitted most the lognormal niche-based model in all chronosequence areas. High dispersal and an increasing influence of abiotic factors coupled with a decreasing influence of biotic factors were found along the chronosequence. Thus, we found a dominant role of dispersal process governing microbial assembly with a secondary effect of homogeneous selection process, mainly driven by decreasing aluminum and increased cations saturation in soil solution, due to long-term no-till cropping. Together, our results indicate that long-term no-till lead community abundances in bulk soil to be in a transient and conditional state, while for soybean rhizosphere, community abundances reach a periodic and permanent distribution state. Dominant dispersal process in rhizosphere, coupled with homogeneous selection, brings evidences that soybean root system selects microbial taxa via trade-offs in order to keep functional resilience of soil processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rodrigues JLM, Pellizari VH, Mueller R, Baek K, Jesus EC, Paula FS, Mirza B, Hamaoui GS, Tsai SM, Feigl B, Tiedje JM, Bohannan BJM, Nusslein K (2013) Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A. 110:988–993. https://doi.org/10.1073/pnas.1220608110

    Article  PubMed  Google Scholar 

  2. Navarrete AA, Kuramae EE, de Hollander M, Pijl AS, van Veen JA, Tsai SM (2013) Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiol. Ecol. 83:607–621. https://doi.org/10.1111/1574-6941.12018

    Article  CAS  PubMed  Google Scholar 

  3. Communication S, Mueller RC, Paula FS et al (2014) Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest. ISME J 8:1548–1550. https://doi.org/10.1038/ismej.2013.253

    Article  CAS  Google Scholar 

  4. Smith CR, Blair PL, Boyd C, Cody B, Hazel A, Hedrick A, Kathuria H, Khurana P, Kramer B, Muterspaw K, Peck C, Sells E, Skinner J, Tegeler C, Wolfe Z (2016) Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem. Ecol Evol 6:8075–8084. https://doi.org/10.1002/ece3.2553

    Article  PubMed  PubMed Central  Google Scholar 

  5. Beisner BE, Haydon DT, Cuddington K (2003) Alternative stable states in ecology. Front. Ecol. Environ. 1:376–382

    Article  Google Scholar 

  6. Mendes LW, Tsai SM, Navarrete AA, de Hollander M, van Veen JA, Kuramae EE (2015) Soil-borne microbiome: linking diversity to function. Microb. Ecol. 70:255–265. https://doi.org/10.1007/s00248-014-0559-2

    Article  CAS  PubMed  Google Scholar 

  7. Mendes LW, Kuramae EE, Navarrete AA, van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1–11. https://doi.org/10.1038/ismej.2014.17

    Article  CAS  Google Scholar 

  8. König S, Worrich A, Centler F, Wick LY, Miltner A, Kästner M, Thullner M, Frank K, Banitz T (2017) Modelling functional resilience of microbial ecosystems: analysis of governing processes. Environ. Model. Softw. 89:31–39. https://doi.org/10.1016/j.envsoft.2016.11.025

    Article  Google Scholar 

  9. Pérez-Jaramillo JE, Mendes R, Raaijmakers JM et al (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 90:635–644. https://doi.org/10.1007/s11103-015-0337-7

    Article  CAS  PubMed  Google Scholar 

  10. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. 108:4516–4522. https://doi.org/10.1073/pnas.1000080107

    Article  PubMed  Google Scholar 

  11. Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC (2009) Global patterns in belowground communities. Ecol. Lett. 12:1238–1249. https://doi.org/10.1111/j.1461-0248.2009.01360.x

    Article  PubMed  Google Scholar 

  12. Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351. https://doi.org/10.1038/ismej.2011.119

    Article  CAS  PubMed  Google Scholar 

  13. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506. https://doi.org/10.1038/nrmicro2795

    Article  CAS  PubMed  Google Scholar 

  14. Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P, Ferrenberg S (2013) Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77:342–356. https://doi.org/10.1128/MMBR.00051-12

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hovatter SR, Dejelo C, Case AL, Blackwood CB (2011) Metacommunity organization of soil microorganisms depends on habitat defined by presence of Lobelia siphilitica plants. Ecology 92:57–65

    Article  Google Scholar 

  16. Jackson ND, Fahrig L (2014) Landscape context affects genetic diversity at a much larger spatial extent than population abundance. Ecology 95:871–881. https://doi.org/10.1890/13-0388.1

    Article  PubMed  Google Scholar 

  17. Rousk J, Baath E, Brookes PC et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351. https://doi.org/10.1038/ismej.2010.58

    Article  PubMed  Google Scholar 

  18. Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF (2015) Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl. Acad. Sci. 201414261:E1326–E1332. https://doi.org/10.1073/pnas.1414261112

    Article  CAS  Google Scholar 

  19. Pillar VD, Duarte LDS (2010) A framework for metacommunity analysis of phylogenetic structure. Ecol. Lett. 13:587–596. https://doi.org/10.1111/j.1461-0248.2010.01456.x

    Article  PubMed  Google Scholar 

  20. Roughgarden J (2009) Is there a general theory of community ecology? Biol. Philos. 24:521–529. https://doi.org/10.1007/s10539-009-9164-z

    Article  Google Scholar 

  21. Pholchan MK, Baptista J de C, Davenport RJ et al (2013) Microbial community assembly, theory and rare functions. Front. Microbiol. 4:1–9. https://doi.org/10.3389/fmicb.2013.00068

    Article  Google Scholar 

  22. Colin Y, Nicolitch O, Van Nostrand JD et al (2017) Taxonomic and functional shifts in the beech rhizosphere microbiome across a natural soil toposequence. Sci. Rep. 7:1–17. https://doi.org/10.1038/s41598-017-07639-1

    Article  Google Scholar 

  23. Fan K, Cardona C, Li Y, Shi Y, Xiang X, Shen C, Wang H, Gilbert JA, Chu H (2017) Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biol. Biochem. 113:275–284. https://doi.org/10.1016/j.soilbio.2017.06.020

    Article  CAS  Google Scholar 

  24. Schlemper TR, Leite MFAA, Lucheta AR et al (2017) Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils. FEMS Microbiol. Ecol. 93:fix096. https://doi.org/10.1093/femsec/fix096

    Article  CAS  Google Scholar 

  25. Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, Rockhold ML, Konopka A (2013) Quantifying community assembly processes and identifying features that impose them. ISME J 7:2069–2079. https://doi.org/10.1038/ismej.2013.93

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dini-Andreote F, de Cássia Pereira E, Silva M, Triadó-Margarit X et al (2014) Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning. ISME J 8:1989–2001. https://doi.org/10.1038/ismej.2014.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goss-Souza D, Mendes LW, Borges CD et al (2017) Soil microbial community dynamics and assembly under long-term land use change. FEMS Microbiol. Ecol. 93:fix109. https://doi.org/10.1093/femsec/fix109

    Article  CAS  Google Scholar 

  28. Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl. Acad. Sci. 115:E1157–E1165. https://doi.org/10.1073/PNAS.1717617115

    Article  CAS  PubMed  Google Scholar 

  29. Székely AJ, Langenheder S (2014) The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiol. Ecol. 87:102–112. https://doi.org/10.1111/1574-6941.12195

    Article  CAS  PubMed  Google Scholar 

  30. Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 8:1175–1182. https://doi.org/10.1111/j.1461-0248.2005.00820.x

    Article  PubMed  Google Scholar 

  31. Ferrenberg S, O’Neill SP, Knelman JE et al (2013) Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J 7:1102–1111. https://doi.org/10.1038/ismej.2013.11

    Article  PubMed  PubMed Central  Google Scholar 

  32. Powell JR, Karunaratne S, Campbell CD, Yao H, Robinson L, Singh BK (2015) Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nat. Commun. 6:1–10. https://doi.org/10.1038/ncomms9444

    Article  CAS  Google Scholar 

  33. Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2009) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345. https://doi.org/10.1038/ismej.2009.122

    Article  PubMed  Google Scholar 

  34. Goss-Souza D, Mendes LW, Rodrigues JLM, Tsai SM (2019) Amazon forest-to-agriculture conversion alters rhizosphere microbiome composition while functions are kept. FEMS Microbiol. Ecol. 95:fiz009. https://doi.org/10.1093/femsec/fiz009

    Article  CAS  PubMed  Google Scholar 

  35. Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis. ASA, Madison, pp 383–411

    Google Scholar 

  36. Tedesco MJ, Gianello C, Bissani CA et al (1995) Analysis of soil, plants and other materials. Universidade Federal do Rio Grande do Sul, Porto Alegre

    Google Scholar 

  37. Claessen MEC, Barreto WO, Paula JL, Duarte MN (1997) Manual of soil analysis methods2nd edn. Embrapa, Rio de Janeiro

    Google Scholar 

  38. Dhaliwal GS, Gupta N, Kukal SS, Kaur M (2011) Standardization of automated Vario EL III CHNS analyzer for total carbon and nitrogen determination in soils. Commun. Soil Sci. Plant Anal. 42:971–979. https://doi.org/10.1080/00103624.2011.558965

    Article  CAS  Google Scholar 

  39. Keeney DR, Nelson DW (1982) Nitrogen - inorganic forms. In: Page AL (ed) Methods in soil analysis, part 22nd edn. ASA and SSSA, Madison, pp 643–698

    Google Scholar 

  40. Melo WJ, Melo GMP, Araújo ASF, Melo VP (2010) Avaliação da atividade enzimática em amostras de solo. In: Figueiredo MVB, Burity HA, Oliveira JP, Santos CE (eds) Biotecnologia aplicada à agricultura. Embrapa, Recife, pp 153–187

    Google Scholar 

  41. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhbannikov IY, Hunter SS, Foster JA et al (2017) SeqyClean: a pipeline for high-throughput sequence data preprocessing. In: ACM (ed) Proceedings of the 8th ACM international conference on bioinformatics, computational biology, and health informatics (ACM-BCB ‘17). ACM, Boston, pp 407–416

    Google Scholar 

  43. Wilke A, Bischof J, Gerlach W, Glass E, Harrison T, Keegan KP, Paczian T, Trimble WL, Bagchi S, Grama A, Chaterji S, Meyer F (2016) The MG-RAST metagenomics database and portal in 2015. Nucleic Acids Res. 44:D590–D594. https://doi.org/10.1093/nar/gkv1322

    Article  CAS  PubMed  Google Scholar 

  44. Wilke A, Harrison T, Wilkening J, Field D, Glass EM, Kyrpides N, Mavrommatis K, Meyer F (2012) The M5nr: a novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools. BMC Bioinformatics 13:1–5. https://doi.org/10.1186/1471-2105-13-141

    Article  CAS  Google Scholar 

  45. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2013) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42:1–9. https://doi.org/10.1093/nar/gkt1226

    Article  CAS  Google Scholar 

  46. Paulson JN, Colin Stine O, Bravo HC, Pop M (2013) Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10:1200–1202. https://doi.org/10.1038/nmeth.2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baselga A, Orme DL (2012) Betapart : an R package for the study of beta diversity. Methods Ecol. Evol. 3:808–812. https://doi.org/10.1111/j.2041-210X.2012.00224.x

    Article  Google Scholar 

  48. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19:134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x

    Article  Google Scholar 

  49. Jabot F, Etienne RS, Chave J (2008) Reconciling neutral community models and environmental filtering: theory and an empirical test. Oikos 117:1308–1320. https://doi.org/10.1111/j.2008.0030-1299.16724.x

    Article  Google Scholar 

  50. Feinstein LM, Blackwood CB (2012) Taxa-area relationship and neutral dynamics influence the diversity of fungal communities on senesced tree leaves. Environ. Microbiol. 14:1488–1499. https://doi.org/10.1111/j.1462-2920.2012.02737.x

    Article  CAS  PubMed  Google Scholar 

  51. Bozdogan H (1987) Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52:345–370. https://doi.org/10.1007/BF02294361

    Article  Google Scholar 

  52. Etienne RS, Alonso D (2005) A dispersal-limited sampling theory for species and alleles. Ecol. Lett. 8:1147–1156. https://doi.org/10.1111/j.1461-0248.2005.00817.x

    Article  PubMed  Google Scholar 

  53. Lepš J, Šmilauer P (2005) Multivariate analysis of ecological data using CANOCO. Bull. Ecol. Soc. Am. 86:6–6. https://doi.org/10.1890/0012-9623(2005)86[6a:MAOEDU]2.0.CO;2

    Article  Google Scholar 

  54. Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590. https://doi.org/10.1038/nrmicro.2017.87

    Article  CAS  PubMed  Google Scholar 

  55. Vellend M (2010) Conceptual synthesis in community ecology. Q. Rev. Biol. 85:183–206

    Article  Google Scholar 

  56. Hubbell SP (2005) Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 19:166–172. https://doi.org/10.1111/j.0269-8463.2005.00965.x

    Article  Google Scholar 

  57. Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, Lee YK (2018) Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J 12:1072–1083. https://doi.org/10.1038/s41396-018-0082-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stegen JC, Lin X, Fredrickson JK, Konopka AE (2015) Estimating and mapping ecological processes influencing microbial community assembly. Front. Microbiol. 6:1–15. https://doi.org/10.3389/fmicb.2015.00370

    Article  Google Scholar 

  59. Wang J, Shen J, Wu Y, Tu C, Soininen J, Stegen JC, He J, Liu X, Zhang L, Zhang E (2013) Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J 7:1310–1321. https://doi.org/10.1038/ismej.2013.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kielak AM, Scheublin TR, Mendes LW, van Veen JA, Kuramae EE (2016) Bacterial community succession in pine-wood decomposition. Front. Microbiol. 7:1–12. https://doi.org/10.3389/fmicb.2016.00231

    Article  Google Scholar 

  61. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  62. Mutshinda CM, O’Hara RB (2011) Integrating the niche and neutral perspectives on community structure and dynamics. Oecologia 166:241–251

    Article  Google Scholar 

  63. Fukami T, Nakajima M (2011) Community assembly: alternative stable states or alternative transient states? Ecol. Lett. 14:973–984. https://doi.org/10.1111/j.1461-0248.2011.01663.x

    Article  PubMed  PubMed Central  Google Scholar 

  64. Maaß S, Migliorini M, Rillig MC, Caruso T (2014) Disturbance, neutral theory, and patterns of beta diversity in soil communities. Ecol Evol 4:4766–4774. https://doi.org/10.1002/ece3.1313

    Article  PubMed  PubMed Central  Google Scholar 

  65. McGill BJ, Maurer BA, Weiser MD (2006) Empirical evaluation of neutral theory. Ecology 87:1411–1423

    Article  Google Scholar 

  66. Jia X, Dini-Andreote F, Falcão Salles J (2018) Community assembly processes of the microbial rare biosphere. Trends Microbiol. 26:738–747. https://doi.org/10.1016/j.tim.2018.02.011

    Article  CAS  PubMed  Google Scholar 

  67. Vega-Avila AD, Gumiere T, Andrade PAMM et al (2014) Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina. Antonie Van Leeuwenhoek, Int J Gen Mol Microbiol 107:575–588. https://doi.org/10.1007/s10482-014-0353-7

    Article  CAS  PubMed  Google Scholar 

  68. Qiao Q, Wang F, Zhang JJ, Chen Y, Zhang C, Liu G, Zhang H, Ma C, Zhang J (2017) The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci. Rep. 7(3940):3940. https://doi.org/10.1038/s41598-017-04213-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nacke H, Fischer C, Thürmer A, Meinicke P, Daniel R (2014) Land use type significantly affects microbial gene transcription in soil. Microb. Ecol. 67:919–930. https://doi.org/10.1007/s00248-014-0377-6

    Article  CAS  PubMed  Google Scholar 

  70. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A. 103:626–631

    Article  CAS  Google Scholar 

  71. Attard E, Recous S, Chabbi a et al (2011) Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses. Glob. Chang. Biol. 17:1975–1989. https://doi.org/10.1111/j.1365-2486.2010.02340.x

    Article  Google Scholar 

  72. Drenovsky RE, Steenwerth KL, Jackson LE, Scow KM (2010) Land use and climatic factors structure regional patterns in soil microbial communities. Glob. Ecol. Biogeogr. 19:27–39. https://doi.org/10.1111/j.1466-8238.2009.00486.x

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75:5111–5120. https://doi.org/10.1128/AEM.00335-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tucker CM, Fukami T (2014) Environmental variability counteracts priority effects to facilitate species coexistence : evidence from nectar microbes. Proc. R. Soc. B 281:1–9. https://doi.org/10.1098/rspb.2013.2637

    Article  Google Scholar 

  75. Shade A, Peter H, Allison SD et al (2012) Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3:1–19. https://doi.org/10.3389/fmicb.2012.00417

    Article  Google Scholar 

  76. Sugiyama A, Ueda Y, Zushi T, Takase H, Yazaki K (2014) Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS One 9:e100709. https://doi.org/10.1371/journal.pone.0100709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the São Paulo Research Foundation (FAPESP/CNPq No. 2008/58114-3 and FAPESP/NSF No. 2014/50320-4). DG-S received a scholarship from National Council for Scientific and Technological Development (PRONEX-CNPq # 140317/2014-7). SMT thanks CNPq (CNPq-PQ 311008/2016-0).

Author information

Authors and Affiliations

Authors

Contributions

DG-S and SMT designed the project. DG-S collected the soil samples. DG-S conducted the experiment. DG-S and LWM performed the metagenome analyses. DG-S and LWM analyzed the metadata. DG-S, LWM, JLMR, and SMT wrote the manuscript.

Corresponding author

Correspondence to Lucas William Mendes.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1074 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goss-Souza, D., Mendes, L.W., Rodrigues, J.L.M. et al. Ecological Processes Shaping Bulk Soil and Rhizosphere Microbiome Assembly in a Long-Term Amazon Forest-to-Agriculture Conversion. Microb Ecol 79, 110–122 (2020). https://doi.org/10.1007/s00248-019-01401-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01401-y

Keywords

Navigation