Production of Current by Syntrophy Between Exoelectrogenic and Fermentative Hyperthermophilic Microorganisms in Heterotrophic Biofilm from a Deep-Sea Hydrothermal Chimney


To study the role of exoelectrogens within the trophic network of deep-sea hydrothermal vents, we performed successive subcultures of a hyperthermophilic community from a hydrothermal chimney sample on a mix of electron donors in a microbial fuel cell system. Electrode (the electron acceptor) was swapped every week to enable fresh development from spent media as inoculum. The MFC at 80 °C yielded maximum current production increasing from 159 to 247 mA m−2 over the subcultures. The experiments demonstrated direct production of electric current from acetate, pyruvate, and H2 and indirect production from yeast extract and peptone through the production of H2 and acetate from fermentation. The microorganisms found in on-electrode communities were mainly affiliated to exoelectrogenic Archaeoglobales and Thermococcales species, whereas in liquid media, the communities were mainly affiliated to fermentative Bacillales and Thermococcales species. The work shows interactions between fermentative microorganisms degrading complex organic matter into fermentation products that are then used by exoelectrogenic microorganisms oxidizing these reduced compounds while respiring on a conductive support. The results confirmed that with carbon cycling, the syntrophic relations between fermentative microorganisms and exoelectrogens could enable some microbes to survive as biofilm in extremely unstable conditions.

Schematic representation of cross-feeding between fermentative and exoelectrogenic microbes on the surface of the conductive support. B, Bacillus/Geobacillus spp.; Tc, Thermococcales; Gg, Geoglobus spp.; Py, pyruvate; Ac, acetate.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Dick GJ, Anantharaman K, Baker BJ, Li M, Reed DC, Sheik CS (2013) The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. Front. Microbiol. 4.

  2. 2.

    Konn C, Charlou JL, Holm NG, Mousis O (2015) The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge. Astrobiology 15:381–399.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Kelley DS, Baross JA, Delaney JR (2002) Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet. Sci. 30:385–491.

    CAS  Article  Google Scholar 

  4. 4.

    Kristall B, Kelley DS, Hannington MD, Delaney JR (2006) Growth history of a diffusely venting sulfide structure from the Juan de Fuca Ridge: a petrological and geochemical study. Geochem. Geophys. Geosyst. 7.

    Article  Google Scholar 

  5. 5.

    Reysenbach A-L, Longnecker K, Kirshtein J (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl. Environ. Microbiol. 66:3798–3806

    CAS  Article  Google Scholar 

  6. 6.

    Takai K, Nakagawa S, Reysenbach A-L, Hoek J (2006) Microbial ecology of Mid-Ocean ridges and back-arc basins. In: Christie DM, Fisher CR, Lee S-M, Givens S (eds) Back-arc spreading systems: geological, biological, chemical, and physical interactions. American Geophysical Union, pp 185–213

  7. 7.

    Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol. Ecol. 65:1–14.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Frank KL (2013) Linking metabolic rates with the diversity and functional capacity of endolithic microbial communities within hydrothermal vent structures. Doctoral dissertation, Harvard University

  9. 9.

    Sekar N, Wu C-H, Adams MWW, Ramasamy RP (2017) Electricity generation by Pyrococcus furiosus in microbial fuel cells operated at 90°C. Biotechnol. Bioeng. 114:1419–1427.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Pillot G, Frouin E, Pasero E, Godfroy A, Combet-Blanc Y, Davidson S, Liebgott PP (2018) Specific enrichment of hyperthermophilic electroactive Archaea from deep-sea hydrothermal vent on electrically conductive support. Bioresour. Technol. 259:304–311.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Yilmazel YD, Zhu X, Kim K-Y, Holmes DE, Logan BE (2018) Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari. Bioelectrochemistry 119:142–149.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Nakamura R, Takashima T, Kato S, Takai K, Yamamoto M, Hashimoto K (2010) Electrical current generation across a black smoker chimney. Angew. Chem. Int. Ed. 49:7692–7694.

    CAS  Article  Google Scholar 

  13. 13.

    Allen RM, Bennetto HP (1993) Microbial fuel-cells. Appl. Biochem. Biotechnol. 39–40:27–40.

    Article  Google Scholar 

  14. 14.

    Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    CAS  Article  Google Scholar 

  15. 15.

    Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Env Sci 8:513–519.

    CAS  Article  Google Scholar 

  16. 16.

    Koch C, Harnisch F (2016) Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 3:1282–1295.

    CAS  Article  Google Scholar 

  17. 17.

    Nielsen ME, Reimers CE, Stecher HA (2007) Enhanced power from chambered benthic microbial fuel cells. Environ Sci Technol 41:7895–7900.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Gong Y, Radachowsky SE, Wolf M, Nielsen ME, Girguis PR, Reimers CE (2011) Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environ Sci Technol 45:5047–5053.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Girguis PR, Holden JF (2012) On the potential for bioenergy and biofuels from hydrothermal vent microbes. Oceanography 25:213–217

    Article  Google Scholar 

  20. 20.

    Yamamoto M, Nakamura R, Kasaya T, Kumagai H, Suzuki K, Takai K (2017) Spontaneous and widespread electricity generation in natural deep-sea hydrothermal fields. Angew. Chem. Int. Ed. 56:5725–5728.

    CAS  Article  Google Scholar 

  21. 21.

    Desbruyères D, Almeida A, Biscoito M, Comtet T, Khripounoff A, le Bris N, Sarradin PM, Segonzac M (2000) A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controls. Hydrobiologia 440:201–216.

    Article  Google Scholar 

  22. 22.

    Portail M, Olu K, Dubois SF, Escobar-Briones E, Gelinas Y, Menot L, Sarrazin J (2016) Food-web complexity in Guaymas Basin hydrothermal vents and cold seeps. PLoS One 11:e0162263.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Sarradin P-M, Cannat M (2014) MOMARSAT2014 cruise, Pourquoi pas ? R/V

  24. 24.

    Boileau C, Auria R, Davidson S, Casalot L, Christen P, Liebgott PP, Combet-Blanc Y (2016) Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima part I: effects of sulfured nutriments, with thiosulfate as model, on hydrogen production and growth. Biotechnol Biofuels 9(269):269.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Zhang L, Kang M, Xu J, Xu J, Shuai Y, Zhou X, Yang Z, Ma K (2016) Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge. Sci. Rep. 6.

  26. 26.

    Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Michotey V, Guasco S, Boeuf D, Morezzi N, Durieux B, Charpy L, Bonin P (2012) Spatio-temporal diversity of free-living and particle-attached prokaryotes in the tropical lagoon of Ahe atoll (Tuamotu Archipelago) and its surrounding oceanic waters. Mar. Pollut. Bull. 65:525–537.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Einen J, Thorseth IH, Øvreås L (2008) Enumeration of Archaea and Bacteria in seafloor basalt using real-time quantitative PCR and fluorescence microscopy. FEMS Microbiol. Lett. 282:182–187.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Rusch A, Amend JP (2004) Order-specific 16S rRNA-targeted oligonucleotide probes for (hyper)thermophilic Archaea and Bacteria. Extremophiles 8:357–366.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL, DeSantis TZ, Hugenholtz P, Andersen GL, Coates JD (2008) A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J 2:1146–1156.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Fu Q, Fukushima N, Maeda H, Sato K, Kobayashi H (2015) Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80 °C. Biosci. Biotechnol. Biochem. 79:1200–1206.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Shehab NA, Ortiz-Medina JF, Katuri KP, Hari AR, Amy G, Logan BE, Saikaly PE (2017) Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula. Bioresour. Technol. 239:82–86.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Sutrisno A, Ueda M, Abe Y, Nakazawa M, Miyatake K (2004) A chitinase with high activity toward partially N-acetylated chitosan from a new, moderately thermophilic, chitin-degrading bacterium, Ralstonia sp. A-471. Appl. Microbiol. Biotechnol. 63:398–406.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Wagner ID, Wiegel J (2008) Diversity of thermophilic anaerobes. Ann. N. Y. Acad. Sci. 1125:1–43.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Dai K, Wen J-L, Zhang F, Ma XW, Cui XY, Zhang Q, Zhao TJ, Zeng RJ (2017) Electricity production and microbial characterization of thermophilic microbial fuel cells. Bioresour. Technol. 243:512–519.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Xu F, Cao F, Kong Q, Zhou LL, Yuan Q, Zhu YJ, Wang Q, du YD, Wang ZD (2018) Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chem. Eng. J. 339:479–486.

    CAS  Article  Google Scholar 

  37. 37.

    Bertoldo C, Antranikian G (2006) The order Thermococcales. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes. Springer, New York, pp 69–81

    Google Scholar 

  38. 38.

    Slobodkin AI, Jeanthon C, L’Haridon S et al (1999) Dissimilatory reduction of Fe(III) by thermophilic Bacteria and Archaea in deep subsurface petroleum reservoirs of Western Siberia. Curr. Microbiol. 39:99–102.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Slobodkin A, Campbell B, Cary SC, Bonch-Osmolovskaya E, Jeanthon C (2001) Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in deep-sea hydrothermal vents at 13°N (East Pacific Rise). FEMS Microbiol. Ecol. 36:235–243.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Kashefi K, Holmes DE, Reysenbach A-L, Lovley DR (2002) Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl. Environ. Microbiol. 68:1735–1742.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Manzella MP, Reguera G, Kashefi K (2013) Extracellular electron transfer to Fe(III) oxides by the hyperthermophilic archaeon Geoglobus ahangari via a direct contact mechanism. Appl. Environ. Microbiol. 79:4694–4700.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Nazina TN, Tourova TP, Poltaraus AB et al (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th. Int. J. Syst. Evol. Microbiol. 51:433–446.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Choi Y-J, Jung E-K, Park H-J et al (2004) Construction of microbial fuel cells using thermophilic microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius. Bull. Kor. Chem. Soc. 25:813–818.

    CAS  Article  Google Scholar 

  44. 44.

    Nimje VR, Chen C-Y, Chen C-C, Jean JS, Reddy AS, Fan CW, Pan KY, Liu HT, Chen JL (2009) Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell. J. Power Sources 190:258–263.

    CAS  Article  Google Scholar 

  45. 45.

    Borah D, More S, Yadav RNS (2013) Construction of double chambered microbial fuel cell (MFC) using household materials and Bacillus megaterium isolate from tea garden soil. J. Microbiol. Biotechnol. Food Sci. 3:84–86

    CAS  Google Scholar 

  46. 46.

    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu. Rev. Microbiol. 49:711–745

    CAS  Article  Google Scholar 

  47. 47.

    Jolivet E, L’Haridon S, Corre E et al (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int. J. Syst. Evol. Microbiol. 53:847–851.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 1:263–267

    CAS  Article  Google Scholar 

  49. 49.

    Hussain A, Guiot SR, Mehta P, Raghavan V, Tartakovsky B (2011) Electricity generation from carbon monoxide and syngas in a microbial fuel cell. Appl. Microbiol. Biotechnol. 90:827–836.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Legin E, Copinet A, Duchiron F (1998) Production of thermostable amylolytic enzymes by Thermococcus hydrothermalis. Biotechnol. Lett. 20:363–367.

    CAS  Article  Google Scholar 

Download references


The authors thank Erwan Roussel (LM2E, IFREMER Brest) for helpful suggestions, Céline Rommevaux and Françoise Lesongeur for sampling during the MOMARSAT 2014 cruise, the MIM platform (MIO, France) for providing access to their confocal microscopy facility, and the GeT-PlaGe platform (GenoToul, France) for DNA sequencing.


This work received financial support from the CNRS national interdisciplinary research program (PEPS-ExoMod 2016). The project leading to this publication has received funding from European FEDER program under project 1166-39417.

Author information



Corresponding author

Correspondence to Pierre-Pol Liebgott.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material


(DOCX 16 kb)


(DOCX 16 kb)


(DOCX 66 kb)


(DOCX 15 kb)


(PDF 446 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pillot, G., Davidson, S., Auria, R. et al. Production of Current by Syntrophy Between Exoelectrogenic and Fermentative Hyperthermophilic Microorganisms in Heterotrophic Biofilm from a Deep-Sea Hydrothermal Chimney. Microb Ecol 79, 38–49 (2020).

Download citation


  • Electromicrobiology
  • Exoelectrogenic
  • Hyperthermophilic microorganisms
  • Microbial interaction
  • Deep-sea hydrothermal vent