Skip to main content

Advertisement

Log in

Ecological Strategies Behind the Selection of Cultivable Actinomycete Strains from the Yucatan Peninsula for the Discovery of Secondary Metabolites with Antibiotic Activity

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The quest for novel natural products has recently focused on the marine environment as a source for novel microorganisms. Although isolation of marine-derived actinomycete strains is now common, understanding their distribution in the oceans and their adaptation to this environment can be helpful in the selection of isolates for further novel secondary metabolite discovery. This study explores the taxonomic diversity of marine-derived actinomycetes from distinct environments in the coastal areas of the Yucatan Peninsula and their adaptation to the marine environment as a first step towards novel natural product discovery. The use of simple ecological principles, for example, phylogenetic relatedness to previously characterized actinomycetes or seawater requirements for growth, to recognize isolates with adaptations to the ocean in an effort to select for marine-derived actinomycete to be used for further chemical studies. Marine microbial environments are an important source of novel bioactive natural products and, together with methods such as genome mining for detection of strains with biotechnological potential, ecological strategies can bring useful insights in the selection and identification of marine-derived actinomycetes for novel natural product discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kong DX, Jiang YY, Zhang HY (2010) Marine natural products as sources of novel scaffolds: achievement and concern. Drug Discov Today 15(21–22):884–886. https://doi.org/10.1016/j.drudis.2010.09.002.

    Article  PubMed  Google Scholar 

  2. Mayer AM, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, McIntosh JM, Newman DJ, Potts BC, D S (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. - PubMed - NCBI. Trends Pharmacol Sci 31(6):255–265. https://doi.org/10.1016/j.tips.2010.02.005

    Article  CAS  PubMed  Google Scholar 

  3. Martins A, Vieira H, Gaspar H, Santos S (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 12(2):1066–1101. https://doi.org/10.3390/md12021066

    Article  PubMed  PubMed Central  Google Scholar 

  4. Subramani R, Aalbersberg W (2012) Marine Actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res 167(10):571–580. https://doi.org/10.1016/j.micres.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  5. Manivasagan P, Venkatesa J, Kim S.-K. Marine microbiology: bioactive compounds and biotechnological applications. Wiley-VCH Verlag GmbH & Co. KGaA . 2013. pp. 1–19.

  6. Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K (2014) Pharmaceutically active secondary metabolites of marine Actinobacteria. Microbiol Res 169(4):262–278. https://doi.org/10.1016/j.micres.2013.07.014

    Article  CAS  PubMed  Google Scholar 

  7. Sharma R, Ranjan R, Kapardar RK, Grover A (2005) Special section: microbial diversity “unculturable” bacterial diversity: an untapped resource. Curr Sci 89(1)

  8. Kyrpides NC, Hugenholtz P, Eisen JA, Woyke T, Göker M, Parker CT, Amann R, Beck BJ, Chain PSG, Chun J, Colwell RR, Danchin A, Dawyndt P, Dedeurwaerdere T, DeLong EF, Detter JC, De Vos P, Donohue TJ, Dong X-Z, Ehrlich DS, Fraser C, Gibbs R, Gilbert J, Gilna P, Glöckner FO, Jansson JK, Keasling JD, Knight R, Labeda D, Lapidus A, Lee J-S, Li W-J, MA J, Markowitz V, Moore ERB, Morrison M, Meyer F, Nelson KE, Ohkuma M, Ouzounis CA, Pace N, Parkhill J, Qin N, Rossello-Mora R, Sikorski J, Smith D, Sogin M, Stevens R, Stingl U, Suzuki K, Taylor D, Tiedje JM, Tindall B, Wagner M, Weinstock G, Weissenbach J, White O, Wang J, Zhang L, Zhou Y-G, Field D, Whitman WB, Garrity GM, Klenk H-P, Pace N, Achtman M, Wagner M, Pace N, Whitman W, Coleman D, Wiebe W, López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D, Amann R, Ludwig W, Schleifer K, Hugenholtz P, Rappé M, Giovannoni S, Kyrpides N, Hugenholtz P, Kyrpides N, Woese C, Pagani I, Liolios K, Jansson J, Chen I, Smirnova T, Tindall B, Rosselló-Móra R, Busse H, Ludwig W, Kämpfer P, Trüper H, Euzéby J, Tindall B, Kämpfer P, Euzéby J, Oren A, Tindall B, Garrity G, Chain P, Grafham D, Fulton R, Fitzgerald M, Hostetler J, Göker M, Klenk H, Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Shih P, Wu D, Latifi A, Axen S, Fewer D, Rinke C, Schwientek P, Sczyrba A, Ivanova N, Anderson I, Nelson K, Weinstock G, Highlander S, Worley K, Creasy H, Field D, Amaral-Zettler L, Cochrane G, Cole J, Dawyndt P, Field D, Garrity G, Gray T, Morrison N, Selengut J, Field D, Sansone S, Collis A, Booth T, Dukes P, Yilmaz P, Kottmann R, Field D, Knight R, Cole J, Walker A, Göker M, Klenk H, Buckley M, Roberts R, Garrity G, Field D, Kyrpides N, Hirschman L, Sansone S, Garrity G, Wilke A, Harrison T, Wilkening J, Field D, Glass E, Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Dedeurwaerdere T, DeVos P, Dijkshoorn L, Connon S, Giovannoni S, Staley J, Konopka A, Faith D, Qin J, Li R, Raes J, Arumugam M, Burgdorf K, Gilbert J, Meyer F, Jansson J, Gordon J, Pace N (2014) Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. PLoS Biol 12(8):e1001920. https://doi.org/10.1371/journal.pbio.1001920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci U S A 114(22):5601–5606. https://doi.org/10.1073/pnas.1614680114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gomez-Escribano JP, Alt S, Bibb MJ (2016) Next generation sequencing of Actinobacteria for the discovery of novel natural products. Mar Drugs 14(4):6–8. https://doi.org/10.3390/md14040078.

    Article  Google Scholar 

  11. Jensen PR, Dwight R, Fenical W (1991) Distribution of actinomycetes in near-shore tropical marine sediments, 57 (4).

  12. Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68(10):5005–5011. https://doi.org/10.1128/AEM.68.10.5005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prieto-Davo A (2013) Phylogenetic and chemical diversity of marine-derived actinomycetes from Southern California sediments. University of California

  14. Prieto-Davo A, Dias T, Gomes SE, Rodrigues S, Parera-Valadez Y, Borralho PM, Pereira F, Rodrigues CMP, Santos-Sanches I, Gaudencio SP (2016) The Madeira Archipelago as a significant source of marine-derived actinomycete diversity with anticancer and antimicrobial potential. Front Microbiol 7(OCT):1–12. https://doi.org/10.3389/fmicb.2016.01594.

    Article  Google Scholar 

  15. Fenical W (1994) Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annu Rev Microbiol 48:559–584. https://doi.org/10.1146/annurev.micro.48.1.559

    Article  PubMed  Google Scholar 

  16. Netzker T, Fischer J, Weber J, Mattern DJ, König CC, Valiante V, Schroeckh V, Brakhage AA (2015) Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol 6:299. https://doi.org/10.3389/fmicb.2015.00299

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9(3):245–251. https://doi.org/10.1016/j.mib.2006.03.004

    Article  CAS  PubMed  Google Scholar 

  18. Ragini K, Aalbersberg W (2014) Isolation and characterisation of rifamycin W and phenylethylamides from a Fijian marine actinomycete Salinispora arenicola. South Pacific J Nat Appl Sci 32(2):43. https://doi.org/10.1071/SP14007

    Article  Google Scholar 

  19. El Naggar MM, El-Assar SA, Shata AMA (2015) Production of antitumor agents from novel marine actinomycetes isolated from Alexandria, Egypt. Single Cell Biol 4(1). https://doi.org/10.4172/2168-9431.1000e122.

  20. Sanjivkumar M, Ramesh Babu D, Sunganya AM, Silambarasan AM, Balagurunathan R, Immanuel G (2016) Investigation on pharmacological activities of secondary metabolite extracted from a mangrove associated actinobacterium Streptomyces olivaceus (MSU3). Biocatal Agric Biotechnol 6:82–90. https://doi.org/10.1016/J.BCAB.2016.03.001.

    Article  Google Scholar 

  21. Kumar KN, Elavarasi TGA (2013) Studies on antimicrobial activity of marine actinomycetes isolated from Rameswaram , 4 (4), 706–710.

  22. Messaoudi O, Bendahou M, Benamar I, Abdelwouhud D (2015) Identification and preliminary characterization of non-polyene antibiotics secreted by new strain of actinomycete isolated from Sebkha of Kenadsa, Algeria. Asian Pac J Trop Biomed 5(6):438–445. https://doi.org/10.1016/J.APJTB.2015.04.002

    Article  Google Scholar 

  23. Bauer-Gottwein P, Gondwe BRN, Charvet G, Marín LE, Rebolledo-Vieyra M, Merediz-Alonso G (2011) Review: the Yucatán Peninsula karst aquifer, Mexico. Hydrogeol J 19(3):507–524. https://doi.org/10.1007/s10040-010-0699-5

    Article  Google Scholar 

  24. Pérez L, Bugja R, Lorenschat J, Brenner M, Curtis J, Hoelzmann P, Islebe G, Scharf B, Schwalb A (2011) Aquatic ecosystems of the Yucatán Peninsula (Mexico), Belize, and Guatemala. Hydrobiologia 661(1):407–433. https://doi.org/10.1007/s10750-010-0552-9

    Article  CAS  Google Scholar 

  25. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kock I, Maskey RP, Biabani MAF, Helmke E, Laatsch H (2005) 1-Hydroxy-1-norresistomycin and resistoflavin methyl ether: new antibiotics from marine-derived streptomycetes. J Antibiot (Tokyo) 58(8):530–534. https://doi.org/10.1038/ja.2005.73

    Article  CAS  Google Scholar 

  27. Mohanraj G, Sekar T (2013) Isolation and screening of actinomycetes from marine sediments for their potential to produce antimicrobials. Int J life Sci Biotechnol pharma Res 2(3):115–126

    Google Scholar 

  28. Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2(12):666–673. https://doi.org/10.1038/nchembio841

    Article  CAS  PubMed  Google Scholar 

  29. Tiwari K, Gupta RK (2012) Rare actinomycetes: a potential storehouse for novel antibiotics. Crit Rev Biotechnol 32(2):108–132. https://doi.org/10.3109/07388551.2011.562482

    Article  CAS  PubMed  Google Scholar 

  30. Liu X, Ashforth E, Ren B, Song F, Dai H, Liu M, Wang J, Xie Q, Zhang L (2010) Bioprospecting microbial natural product libraries from the marine environment for drug discovery. J Antibiot (Tokyo) 63(8):415–422. https://doi.org/10.1038/ja.2010.56

    Article  CAS  Google Scholar 

  31. Hugenholtz P, Hooper SD, Kyrpides NC (2009) Focus: synergistetes: genomics update. Environ Microbiol 11(6):1327–1329. https://doi.org/10.1111/j.1462-2920.2009.01949.x

    Article  PubMed  Google Scholar 

  32. Milshteyn A, Schneider JS, Brady SF (2014) Mining the metabiome: identifying novel natural products from microbial communities. Chem Biol 21(9):1211–1223. https://doi.org/10.1016/j.chembiol.2014.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Crüsemann M, O’Neill EC, Larson CB, Melnik AV, Floros DJ, Da Silva RR, Jensen PR, Dorrestein PC, Moore BS (2017) Prioritizing natural product diversity in a collection of 146 bacterial strains based on growth and extraction protocols. J Nat Prod 80(3):588–597. https://doi.org/10.1021/acs.jnatprod.6b00722

    Article  CAS  PubMed  Google Scholar 

  34. Rojas-Herrera R, Zamudio-Maya M, Arena-Ortiz L, Pless R, O’Connor-Sánchez A (2011) Microbial diversity, metagenomics and the Yucatán aquifer. Divers. microbiana, metagenómica y el acuífero Yucatán, 80 (130), 231–240.

  35. Maldonado L, Fragoso-Yáñez D, Pérez-García A, Rosellón-Druker J, Quintana ET (2009) Actinobacterial diversity from marine sediments collected in Mexico. Antonie Van Leeuwenhoek 95(2):111–120. https://doi.org/10.1007/s10482-008-9294-3

    Article  CAS  PubMed  Google Scholar 

  36. Martin GD a, Tan LT, Jensen PR, Dimayuga RE, Fairchild CR, Raventos-Suarez C, Fenical W (2007) Marmycins A and B, cytotoxic pentacyclic C-glycosides from a marine sediment-derived actinomycete related to the genus Streptomyces. J Nat Prod 70(9):1406–1409. https://doi.org/10.1021/np060621r

    Article  CAS  PubMed  Google Scholar 

  37. Maldonado L a, Fenical W, Jensen PR, Kauffman C a, Mincer TJ, Ward AC, Bull AT, Goodfellow M (2005) Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Syst Evol Microbiol 55:1759–1766. https://doi.org/10.1099/ijs.0.63625-0

    Article  CAS  PubMed  Google Scholar 

  38. Torres-Beltrán M (2012) Evaluation of the Gulf of California as a potential source of bioactive marine Actinobacteria. Ciencias Mar 38(4):609–624. https://doi.org/10.7773/cm.v38i4.2131

    Article  CAS  Google Scholar 

  39. Goodfellow M, Kämpfer P, Hans-Jürgen B, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (2012) Bergey’s manual of systematic bacteriology Vol. Five, Second.; London.

  40. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30(12):2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Becerril-Espinosa A, Freel KC, Jensen PR, Soria-Mercado IE (2013) Marine Actinobacteria from the Gulf of California: diversity, abundance and secondary metabolite biosynthetic potential. Antonie Van Leeuwenhoek 103(4):809–819. https://doi.org/10.1007/s10482-012-9863-3

    Article  CAS  PubMed  Google Scholar 

  42. Powers EM (1995) Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61(10):3756–3758

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kokare CR, Mahadik KR, Kadam SS, Chopade BA (2004) Isolation of bioactive marine actinomycetes from sediments isolated from Goa and Maharashtra Coastlines (West Coast of India) 33(September):248–256

  44. Duncan K, Haltli B, Gill K a, Kerr RG (2014) Bioprospecting from marine sediments of New Brunswick, Canada: exploring the relationship between total bacterial diversity and Actinobacteria diversity. Mar Drugs 12(2):899–925. https://doi.org/10.3390/md12020899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski R a, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chao A, Chiu C-HSR (2016) Estimation and comparison. Wiley StatsRef: statistics reference online; John Wiley & Sons, Ltd: Chichester, UK, pp 1–26

    Google Scholar 

  47. Özcan K, Aksoy SÇ, Kalkan O, Uzel A, Hames-Kocabas EE, Bedir E (2013) Diversity and antibiotic-producing potential of cultivable marine-derived actinomycetes from coastal sediments of Turkey. J Soils Sediments 13(Wilkins 1996):1493–1501. https://doi.org/10.1007/s11368-013-0734-y

    Article  CAS  Google Scholar 

  48. Jensen PR, Dwight R, Fenical W (1991) Distribution of actinomycetes in near-shore tropical marine sediments. Appl Environ Microbiol 57(4):1102–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Youssef NH, Couger MB, McCully AL, Criado AEG, Elshahed MS (2015) Assessing the global phylum level diversity within the bacterial domain: a review. J Adv Res 6:269–282

    Article  PubMed  Google Scholar 

  50. Floros DJ, Jensen PR, Dorrestein PC, Koyama N (2016) A metabolomics guided exploration of marine natural product chemical space. Metabolomics 12

  51. Prieto-Davó, a; Fenical, W.; Jensen, P. Comparative actinomycete diversity in marine sediments. Aquat Microb Ecol 2008, 52 (July), 1–11 DOI: https://doi.org/10.3354/ame01211.

  52. Jensen PR, Williams PG, Oh D-C, Zeigler L, Fenical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73(4):1146–1152. https://doi.org/10.1128/AEM.01891-06

    Article  CAS  PubMed  Google Scholar 

  53. Aranda-Cirerol N (2002) Water quality and sustainable development in Yucatán Peninsula. Environ. Res. J, 5 (6).

  54. Herrera-Silveira JA, Morales-ojeda SM (2009) Evaluation of the health status of a coastal ecosystem in Southeast Mexico: assessment of water quality, phytoplankton and submerged aquatic vegetation. Mar Pollut Bull 59(1–3):72–86. https://doi.org/10.1016/j.marpolbul.2008.11.017

    Article  CAS  PubMed  Google Scholar 

  55. Valdes DS, Real E (1998) Variations and relationships of salinity, nutrients and suspended solids in Chelem coastal lagoon at Yucatan, Mexico. Indian J Mar Sci 27(2):149–156

    CAS  Google Scholar 

  56. Rashad FM, Fathy HM, El-zayat AS, Elghonaimy AM (2015) Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. 175:34–47.

  57. Tian X, Zhang Z, Yang T, Chen M, Li J, Chen F, Yang J, Li W, Zhang B, Zhang Z, Wu J, Zhang C, Long L, Xiao J (2016) Comparative genomics analysis of Streptomyces species reveals their adaptation to the marine environment and their diversity at the genomic level. Front Microbiol 7:998. https://doi.org/10.3389/fmicb.2016.00998

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fan L, Liu Y, Li Z, Baumann HI, Kleinschmidt K, Ye W, Imhoff JF, Kleine M, Cai D (2011) Draft genome sequence of the marine Streptomyces sp. strain PP-C42, isolated from the Baltic Sea. J Bacteriol 193(14):3691–3692. https://doi.org/10.1128/JB.05097-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Leipoldt F, Zeyhle P, Kulik A, Kalinowski J, Heide L, Kaysser L (2015) Diversity of ABBA prenyltransferases in marine Streptomyces sp. CNQ-509: promiscuous enzymes for the biosynthesis of mixed terpenoid compounds. PLoS One 10(12):e0143237. https://doi.org/10.1371/journal.pone.0143237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Ed 42(3):355–357. https://doi.org/10.1002/anie.200390115

    Article  CAS  Google Scholar 

  61. Tian XP, Long LJ, Wang FZ, Xu Y, Li J, Zhang J, Zhang CS, Zhang S, Li WJ (2012) Streptomyces nanhaiensis sp. Nov., a marine streptomycete isolated from a deep-sea sediment. Int J Syst Evol Microbiol 62(4):864–868. https://doi.org/10.1099/ijs.0.031591-0

    Article  CAS  PubMed  Google Scholar 

  62. Murray G (2007) Constructing paradise: the impacts of big tourism in the Mexican coastal zone. Coast Manag 35(2–3):339–355. https://doi.org/10.1080/08920750601169600

    Article  Google Scholar 

  63. Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. Bioscience 54(8):777. https://doi.org/10.1641/0006-3568(2004)054[0777:TUOSSP]2.0.CO;2

  64. R Core Team. R: a language and environment for statistical computing; 2015; Vol. 1.

  65. Rahalison L, Hamburger M, Hostettmann K, Monod M, Frenk E (1991) A bioautographic agar overlay method for the detection of antifungal compounds from higher plants. Phytochem Anal 2(5):199–203. https://doi.org/10.1002/pca.2800020503

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Dr. Emanuel Hernández-Núñez at the Department for Marine Resourcesin CINVESTAV, Mérida for his help with the GC-MS analysis of the crude extracts.

Funding

We would like to recognize the Mexican Council of Science and Technology (CONACyT) for their support through fellowships for Parera-Valadez (Masters in Science fellowship: 560614) and Yam-Puc (Postdoctoral fellowship). We would like to recognize the National Autonomous University of Mexico (UNAM) for their funding through PAPIIT TA200212 and TA200415 and UNAM School of Chemistry for their funding through PAIP.

Author information

Authors and Affiliations

Authors

Contributions

Parera-Valadez contributed by heading the research and writing the paper. Yam-Puc and Figueroa-Saldivar contributed with chemical analyses, bioautography assays, and manuscript writing. López-Aguiar and Márquez-Velázquez contributed with field collections, laboratory procedures, and manuscript revisions. Borges-Argáez and Cáceres-Farfán contributed with bioautography assays.

Corresponding author

Correspondence to Alejandra Prieto-Davó.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Figure S1

Phylogenetic tree with all actinomycete isolates from the coast of the Yucatan peninsula. Alignment and phylogeny were performed following same methods as those reported in Fig. 1 (PDF 37 kb)

Figure S2

Rarefaction curves for the 12 locations sampled. No location was thoroughly sampled and more processing or sampling are needed to reach saturation. (PDF 299 kb)

Figure S3

Detection of the antimicrobial activity of the ethyl acetate extract (5%) from actinomycete NCA004 against Staphylococcus aureus by the bioautography assay. The highly active yellow compound corresponds to resistomycin. 1) Ethyl acetate extract of strain NCA002. 2) Ethyl acetate extract of strain NCA004. 3) Dichloromethane extract of strain NCA004. 4) Acetone extract of strain NCA004. Positive control: amikacin (0.1 mg/mL), negative control: 5 μl of dichloromethane/methanol 1:1. (PDF 728 kb)

Figure S4

Chromatogram displaying resistomycin peak at 12.057 min. Figure S4: UPLC-MS analysis of Ethyl Acetate extract for strain NCA004 showing UV peaks and mass consistent with resistomycin. (PDF 5364 kb)

Figure S5 UV profile and MS data that confirm presence of resitomycin in extract Figure S5 was mentioned in the text but the corresponding data is missing. Please provide.Figure S5 has been uploaded

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parera-Valadez, Y., Yam-Puc, A., López-Aguiar, L.K. et al. Ecological Strategies Behind the Selection of Cultivable Actinomycete Strains from the Yucatan Peninsula for the Discovery of Secondary Metabolites with Antibiotic Activity. Microb Ecol 77, 839–851 (2019). https://doi.org/10.1007/s00248-019-01329-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01329-3

Keywords

Navigation