Impacts of Arsenic and Antimony Co-Contamination on Sedimentary Microbial Communities in Rivers with Different Pollution Gradients

Abstract

Arsenic (As) and antimony (Sb) are both toxic metalloids that are of primary concern for human health. Mining activity has introduced elevated levels of arsenic and antimony into the rivers and has increased the risks of drinking water contamination in China. Due to their mobility, the majority of the metalloids originating from mining activities are deposited in the river sediments. Thus, depending on various geochemical conditions, sediment could either be a sink or source for As and Sb in the water column. Microbes are key mediators for biogeochemical transformation and can both mobilize or precipitate As and Sb. To further understand the microbial community responses to As and Sb contamination, sediment samples with different contamination levels were collected from three rivers. The result of the study suggested that the major portions of As and Sb were in strong association with the sediment matrix and considered nonbioavailable. These fractions, however, were also suggested to have profound influences on the microbial community composition. As and Sb contamination caused strong reductions in microbial diversity in the heavily contaminated river sediments. Microorganisms were more sensitive to As comparing to Sb, as revealed by the co-occurrence network and random forest predictions. Operational taxonomic units (OTUs) that were potentially involved in As and Sb metabolism, such as Anaerolinea, Sphingomonas, and Opitutus, were enriched in the heavily contaminated samples. In contrast, many keystone taxa, including members of the Hyphomicrobiaceae and Bradyrhizobiaceae families, were inhibited by metalloid contamination, which could further impair crucial environmental services provided by these members.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Hughes MF (2004) IARC monographs on the evaluation of carcinogenic risks to humans. In: Int. Agency Res. Cancer

  2. 2.

    Matschullat J (2000) Arsenic in the geosphere—a review. Sci. Total Environ. 249:297–312. https://doi.org/10.1016/S0048-9697(99)00524-0

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Rizoulis A, Al Lawati AWM, Pancost BRD et al (2014) Microbially mediated reduction of FeIII and AsV in Cambodian sediments amended with 13C-labelled hexadecane and kerogen. Environ Chem 11:538–546

    CAS  Article  Google Scholar 

  4. 4.

    Mitsunobu S, Harada T, Takahashi Y (2006) Comparison of antimony behavior with that of arsenic under various soil redox conditions. Environ Sci Technol 40:7270–7276. https://doi.org/10.1021/es060694x

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Cavallo D, Iavicoli I, Setini A, Marinaccio A, Perniconi B, Carelli G, Iavicoli S (2002) Genotoxic risk and oxidative DNA damage in workers exposed to antimony trioxide. Environ. Mol. Mutagen. 40:184–189. https://doi.org/10.1002/em.10102

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Gebel T (1997) Arsenic and antimony: comparative approach on mechanistic toxicology. Chem. Biol. Interact. 107:131–144. https://doi.org/10.1016/S0009-2797(97)00087-2

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Fu Z, Wu F, Amarasiriwardena D, Mo C, Liu B, Zhu J, Deng Q, Liao H (2010) Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan, China. Sci. Total Environ. 408:3403–3410. https://doi.org/10.1016/j.scitotenv.2010.04.031

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Filella M, Belzile N, Chen YW (2002) Antimony in the environment: a review focused on natural waters: I. Occurence. Earth Sci Rev 57:125–176. https://doi.org/10.1016/S0012-8252(01)00070-8

    CAS  Article  Google Scholar 

  9. 9.

    Sun W, Xiao E, Dong Y, Tang S, Krumins V, Ning Z, Sun M, Zhao Y, Wu S, Xiao T (2016) Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China. Sci. Total Environ. 550:297–308. https://doi.org/10.1016/j.scitotenv.2016.01.090

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    He M, Wang X, Wu F, Fu Z (2012) Antimony pollution in China. Sci. Total Environ. 421–422:41–50. https://doi.org/10.1016/j.scitotenv.2011.06.009

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Filella M, Williams PA, Belzile N (2009) Antimony in the environment: knowns and unknowns. Environ. Chem. 6:95–105. https://doi.org/10.1071/EN09007

    CAS  Article  Google Scholar 

  12. 12.

    Courtin-Nomade A, Rakotoarisoa O, Bril H, Grybos M, Forestier L, Foucher F, Kunz M (2012) Weathering of Sb-rich mining and smelting residues: insight in solid speciation and soil bacteria toxicity. Chem. Erde 72:29–39. https://doi.org/10.1016/j.chemer.2012.02.004

    CAS  Article  Google Scholar 

  13. 13.

    Kelepertsis A, Alexakis D, Skordas K (2006) Arsenic, antimony and other toxic elements in the drinking water of Eastern Thessaly in Greece and its possible effects on human health. Environ. Geol. 50:76–84. https://doi.org/10.1007/s00254-006-0188-2

    CAS  Article  Google Scholar 

  14. 14.

    Anawar HM, Freitas MC, Canha N, Regina IS (2011) Arsenic, antimony, and other trace element contamination in a mine tailings affected area and uptake by tolerant plant species. Environ. Geochem. Health 33:353–362. https://doi.org/10.1007/s10653-011-9378-2

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Hiller E, Lalinská B, Chovan M, Jurkovič Ľ, Klimko T, Jankulár M, Hovorič R, Šottník P, Fľaková R, Ženišová Z, Ondrejková I (2012) Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia. Appl. Geochem. 27:598–614. https://doi.org/10.1016/j.apgeochem.2011.12.005

    CAS  Article  Google Scholar 

  16. 16.

    Telford K, Maher W, Krikowa F, Foster S, Ellwood MJ, Ashley PM, Lockwood PV, Wilson SC (2009) Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia. Environ. Chem. 6:133–143. https://doi.org/10.1071/EN08097

    CAS  Article  Google Scholar 

  17. 17.

    Guo H, Tseng Y (2000) Arsenic in drinking water and bladder cancer: comparison between studies based on cancer registry and death certificates. Environ. Geochem. Health 22:83–91

    CAS  Article  Google Scholar 

  18. 18.

    Van Geen A, Bostick BC, Thi Kim Trang P et al (2013) Retardation of arsenic transport through a Pleistocene aquifer. Nature 501:204–207. https://doi.org/10.1038/nature12444

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Pi J, Yamauchi H, Kumagai Y, Sun G, Yoshida T, Aikawa H, Hopenhayn-Rich C, Shimojo N (2002) Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ. Health Perspect. 110:331–336. https://doi.org/10.1289/ehp.02110331

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Li S, Xiao T, Zheng B (2012) Medical geology of arsenic, selenium and thallium in China. Sci. Total Environ. 421–422:31–40. https://doi.org/10.1016/j.scitotenv.2011.02.040

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC, Chanda CR, Lodh D, Saha KC, Mukherjee SK, Roy S, Kabir S, Quamruzzaman Q, Chakraborti D (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ. Health Perspect. 108:393–397. https://doi.org/10.1289/ehp.00108393

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Tsuda T, Babazono A, Yamamoto E, Kurumatani N, Mino Y, Ogawa T, Kishi Y, Aoyama H (1995) Ingested arsenic and internal cancer: a historical cohort study followed for 33 years. Am. J. Epidemiol. 141:198–209. https://doi.org/10.1093/oxfordjournals.aje.a117421

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Wen B, Zhou J, Zhou A, Liu C, Xie L (2016) Sources, migration and transformation of antimony contamination in the water environment of Xikuangshan, China: evidence from geochemical and stable isotope (S, Sr) signatures. Sci. Total Environ. 569–570:114–122. https://doi.org/10.1016/j.scitotenv.2016.05.124

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Berg M, Stengel C, Trang PTK et al (2007) Magnitude of arsenic pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Sci. Total Environ. 372:413–425. https://doi.org/10.1016/j.scitotenv.2006.09.010

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Niazi NK, Singh B, Shah P (2011) Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy. Environ Sci Technol 45:7135–7142

    CAS  Article  Google Scholar 

  26. 26.

    Stollenwerk KG (2003) Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. In: Arsenic in ground water. Springer, pp 67–100

  27. 27.

    Kim EJ, Yoo JC, Baek K (2014) Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Environ. Pollut. 186:29–35. https://doi.org/10.1016/j.envpol.2013.11.032

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Lloyd JR, Oremland RS (2006) Microbial transformations of arsenic in the environment: from soda lakes to aquifers. Elements 2:85–90. https://doi.org/10.2113/gselements.2.2.85

    CAS  Article  Google Scholar 

  29. 29.

    Ji G, Silver S (1992) Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc. Natl. Acad. Sci. 89:9474–9478

    CAS  Article  Google Scholar 

  30. 30.

    Lehr CR, Kashyap DR, McDermott TR (2007) New insights into microbial oxidation of antimony and arsenic. Appl. Environ. Microbiol. 73:2386–2389. https://doi.org/10.1128/AEM.02789-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Carlin A, Shi W, Dey S, Rosen BP (1995) The ars operon of Escherichia coli confers arsenical and antimonial resistance. J. Bacteriol. 177:981–986

    CAS  Article  Google Scholar 

  32. 32.

    Wang Q, Warelow TP, Kang YS, Romano C, Osborne TH, Lehr CR, Bothner B, McDermott TR, Santini JM, Wang G (2015) Arsenite oxidase also functions as an antimonite oxidase. Appl. Environ. Microbiol. 81:1959–1965. https://doi.org/10.1128/AEM.02981-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Mateos LM, Ordóñez E, Letek M, Gil JA (2006) Corynebacterium glutamicumas a model bacterium for the bioremediation of arsenic. Int. Microbiol. 9:207–215

    CAS  PubMed  Google Scholar 

  34. 34.

    Zhang G, Ouyang X, Li H, Fu Z, Chen J (2016) Bioremoval of antimony from contaminated waters by a mixed batch culture of sulfate-reducing bacteria. Int. Biodeterior. Biodegrad. 115:148–155. https://doi.org/10.1016/j.ibiod.2016.08.007

    CAS  Article  Google Scholar 

  35. 35.

    Sun W, Xiao E, Häggblom M, Krumins V, Dong Y, Sun X, Li F, Wang Q, Li B, Yan B (2018) Bacterial survival strategies in an alkaline tailing site and the physiological mechanisms of dominant phylotypes as revealed by metagenomic analyses. Environ Sci Technol. 52:13370–13380. https://doi.org/10.1021/acs.est.8b03853

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Sun W, Xiao E, Krumins V, Häggblom MM, Dong Y, Pu Z, Li B, Wang Q, Xiao T, Li F (2018) Rhizosphere microbial response to multiple metal(loid)s in different contaminated arable soils indicates crop-specific metal-microbe interactions. Appl. Environ. Microbiol. 84:1–15. https://doi.org/10.1128/AEM.00701-18

    Article  Google Scholar 

  37. 37.

    Wang N, Zhang S, He M (2018) Bacterial community profile of contaminated soils in a typical antimony mining site. Environ. Sci. Pollut. Res. 25:141–152. https://doi.org/10.1007/s11356-016-8159-y

    CAS  Article  Google Scholar 

  38. 38.

    Luo J, Bai Y, Liang J, Qu J (2014) Metagenomic approach reveals variation of microbes with arsenic and antimony metabolism genes from highly contaminated soil. PLoS One 9:e108185. https://doi.org/10.1371/journal.pone.0108185

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Xiao E, Krumins V, Xiao T, Dong Y, Tang S, Ning Z, Huang Z, Sun W (2017) Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic. Environ. Pollut. 221:244–255. https://doi.org/10.1016/j.envpol.2016.11.071

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Sun W, Xiao E, Xiao T, Krumins V, Wang Q, Häggblom M, Dong Y, Tang S, Hu M, Li B, Xia B, Liu W (2017) Response of soil microbial communities to elevated antimony and arsenic contamination indicates the relationship between the innate microbiota and contaminant fractions. Environ Sci Technol 51:9165–9175. https://doi.org/10.1021/acs.est.7b00294

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Kataoka T, Mitsunobu S, Hamamura N (2018) Influence of the chemical form of antimony on soil microbial community structure and arsenite oxidation activity. Microbes Environ. 00:214–221. https://doi.org/10.1264/jsme2.ME17182

    Article  Google Scholar 

  42. 42.

    Li J, Wang Q, Oremland RS, Kulp TR, Rensing C, Wang G (2016) Microbial antimony biogeochemistry: enzymes, regulation, and related metabolic pathways. Appl. Environ. Microbiol. 82:5482–5495. https://doi.org/10.1128/AEM.01375-16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Sun W, Xiao E, Krumins V, Dong Y, Xiao T, Ning Z, Chen H, Xiao Q (2016) Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage. Appl. Microbiol. Biotechnol. 100:8523–8535. https://doi.org/10.1007/s00253-016-7653-y

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano DC (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 436:309–323. https://doi.org/10.1016/S0003-2670(01)00924-2

    CAS  Article  Google Scholar 

  45. 45.

    Ge Z, Wei C (2013) Simultaneous analysis of SbIII, SbV and TMSb by high performance liquid chromatography–inductively coupled plasma–mass spectrometry detection: application to antimony speciation in soil samples. J. Chromatogr. Sci. 51:391–399. https://doi.org/10.1093/chromsci/bms153

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Parada AE, Needham DM, Fuhrman JA (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18:1403–1414. https://doi.org/10.1111/1462-2920.13023

    CAS  Article  Google Scholar 

  47. 47.

    Herbold CW, Pelikan C, Kuzyk O, Hausmann B, Angel R, Berry D, Loy A (2015) A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front. Microbiol. 6:1–8. https://doi.org/10.3389/fmicb.2015.00731

    Article  Google Scholar 

  48. 48.

    Green SJ, Venkatramanan R, Naqib A (2015) Deconstructing the polymerase chain reaction: understanding and correcting bias associated with primer degeneracies and primer-template mismatches. PLoS One 10:1–21. https://doi.org/10.1371/journal.pone.0128122

    CAS  Article  Google Scholar 

  49. 49.

    Bybee SM, Bracken-Grissom H, Haynes BD, Hermansen RA, Byers RL, Clement MJ, Udall JA, Wilcox ER, Crandall KA (2011) Targeted amplicon sequencing (TAS): a scalable next-gen approach to multilocus, multitaxa phylogenetics. Genome Biol Evol 3:1312–1323. https://doi.org/10.1093/gbe/evr106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996–998. https://doi.org/10.1038/nmeth.2604

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72:5069–5072. https://doi.org/10.1128/AEM.03006-05

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Ssekagiri A, Sloan W, Ijaz U (2017) microbiomeSeq: an R package for microbial community analysis in an environmental context. In: ISCB Africa ASBCB conference

  56. 56.

    Wickham H (2016) ggplot2:Elegant Graphics for Data Analysis. Springer-Verlaag, New York.http://ggplot2.org

  57. 57.

    Wang Q, Xie Z, Li F (2015) Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale. Environ. Pollut. 206:227–235. https://doi.org/10.1016/j.envpol.2015.06.040

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. https://doi.org/10.1101/gr.1239303.metabolite

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Newman MEJ (2006) Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103:8577–8582. https://doi.org/10.1073/pnas.0601602103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:1–10. https://doi.org/10.1038/s41579-018-0024-1

    CAS  Article  Google Scholar 

  61. 61.

    Wang S (2002) Present situation and sustainable development of antimony resources in China. China Met Bull 47:6–10 (in Chinese with English abstract)

    Google Scholar 

  62. 62.

    Casiot C, Ujevic M, Munoz M, Seidel JL, Elbaz-Poulichet F (2007) Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France). Appl. Geochem. 22:788–798. https://doi.org/10.1016/j.apgeochem.2006.11.007

    CAS  Article  Google Scholar 

  63. 63.

    Arrigo KR (2005) Marine microorgansisms and global nutrient cycles. Nature 437:349–355. https://doi.org/10.1038/nature0415

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s biogeochemical cycles. Science (80-) 320:1034–1039. https://doi.org/10.1126/science.1153213

    CAS  Article  Google Scholar 

  65. 65.

    Vesper DJ, White WB (2004) Spring and conduit sediments as storage reservoirs for heavy metals in karst aquifers. Environ. Geol. 45:481–493. https://doi.org/10.1007/s00254-003-0899-6

    CAS  Article  Google Scholar 

  66. 66.

    Wang X, He M, Xi J, Lu X (2011) Antimony distribution and mobility in rivers around the world’s largest antimony mine of Xikuangshan, Hunan Province, China. Microchem. J. 97:4–11. https://doi.org/10.1016/j.microc.2010.05.011

    CAS  Article  Google Scholar 

  67. 67.

    Buanuam J, Wennrich R (2010) Dynamic flow-through sequential extraction for assessment of fractional transformation and inter-element associations of arsenic in stabilized soil and sludge. J. Hazard. Mater. 184:849–854. https://doi.org/10.1016/j.jhazmat.2010.08.119

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Filella M (2011) Antimony interactions with heterogeneous complexants in waters, sediments and soils: a review of data obtained in bulk samples. Earth Sci Rev 107:325–341. https://doi.org/10.1016/j.earscirev.2011.04.002

    CAS  Article  Google Scholar 

  69. 69.

    He M (2007) Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China. Environ. Geochem. Health 29:209–219. https://doi.org/10.1007/s10653-006-9066-9

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Rodriguez RR, Basta NT, Casteel SW, Armstrong FP, Ward DC (2003) Chemical extraction methods to assess bioavailable arsenic in soil and solid media. J. Environ. Qual. 32:876–884. https://doi.org/10.2134/jeq2003.8760

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Craw D, Wilson N, Ashley PM (2004) Geochemical controls on the environmental mobility of Sb and As at mesothermal antimony and gold deposits. Appl. Earth Sci. 113:3–10. https://doi.org/10.1179/037174504225004538

    CAS  Article  Google Scholar 

  72. 72.

    Méndez-García C, Peláez AI, Mesa V et al (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front. Microbiol. 6:1–17. https://doi.org/10.3389/fmicb.2015.00475

    Article  Google Scholar 

  73. 73.

    Sheik CS, Mitchell TW, Rizvi FZ, Rehman Y, Faisal M, Hasnain S, McInerney MJ, Krumholz LR (2012) Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS One 7:e40059. https://doi.org/10.1371/journal.pone.0040059

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Wang Q, He M, Wang Y (2011) Influence of combined pollution of antimony and arsenic on culturable soil microbial populations and enzyme activities. Ecotoxicology 20:9–19. https://doi.org/10.1007/s10646-010-0551-7

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Stebbing A (1982) Hormesis—the stimulation of growth by low-levels of inhibitors. Sci. Total Environ. 22:213–234. https://doi.org/10.1016/0048-9697(82)90066-3

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Cai L, Liu G, Rensing C, Wang G (2009) Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol. 9:1–11. https://doi.org/10.1186/1471-2180-9-4

    CAS  Article  Google Scholar 

  77. 77.

    Xiao KQ, Li LG, Ma LP, Zhang SY, Bao P, Zhang T, Zhu YG (2016) Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents. Environ. Pollut. 211:1–8. https://doi.org/10.1016/j.envpol.2015.12.023

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Islam FS, Boothman C, Gault AG, Polya DA, Lloyd JR (2005) Potential role of the Fe(III)-reducing bacteria Geobacter and Geothrix in controlling arsenic solubility in Bengal delta sediments. Mineral. Mag. 69:865–875. https://doi.org/10.1180/0026461056950294

    CAS  Article  Google Scholar 

  79. 79.

    Burton ED, Johnston SG, Kraal P, Bush RT, Claff S (2013) Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite. Environ Sci Technol 47:2221–2229. https://doi.org/10.1021/es303867t

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Hudson-Edwards K, Santini J (2013) Arsenic-microbe-mineral interactions in mining-affected environments. Minerals 3:337–351. https://doi.org/10.3390/min3040337

    CAS  Article  Google Scholar 

  81. 81.

    Krantzberg G (1985) The influence of bioturbation on physical , chemical and biological parameters in aquatic environments : a review. Environ. Pollut. 39:99–122

    CAS  Article  Google Scholar 

  82. 82.

    Paulson JN, Stine OC, Barvo HC, Pop M (2013) Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10:1200–1202. https://doi.org/10.1038/nmeth.2658

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Wang X, Rathinasabapathi B, De Oliveira LM et al (2012) Bacteria-mediated arsenic oxidation and reduction in the growth media of arsenic hyperaccumulator Pteris vittata. Environ Sci Technol 46:11259–11266. https://doi.org/10.1021/es300454b

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Mewis K, Armstrong Z, Song YC, Baldwin SA, Withers SG, Hallam SJ (2013) Biomining active cellulases from a mining bioremediation system. J. Biotechnol. 167:462–471. https://doi.org/10.1016/j.jbiotec.2013.07.015

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Wilson RM, Cherrier J, Sarkodee-adoo J et al (2016) Tracing the intrusion of fossil carbon into coastal Louisiana macrofauna using natural 14C and 13C abundances. Deep Res II 129:89–95. https://doi.org/10.1016/j.dsr2.2015.05.014

    CAS  Article  Google Scholar 

  86. 86.

    Gu Y, Van Nostrand JD, Wu L et al (2017) Bacterial community and arsenic functional genes diversity in arsenic contaminated soils from different geographic locations. PLoS One 12:1–18. https://doi.org/10.1371/journal.pone.0176696

    CAS  Article  Google Scholar 

  87. 87.

    Gorra R, Webster G, Martin M, Celi L, Mapelli F, Weightman AJ (2012) Dynamic microbial community associated with iron-arsenic co-precipitation products from a groundwater storage system in Bangladesh. Microb. Ecol. 64:171–186. https://doi.org/10.1007/s00248-012-0014-1

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Van Passel MWJ, Kant R, Palva A et al (2011) Genome sequence of the Verrucomicrobium Opitutus terrae PB90-1, an abundant inhabitant of rice paddy soil ecosystems. J. Bacteriol. 193:2367–2368. https://doi.org/10.1128/JB.00228-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Chin KJ, Liesack W, Janssen PH (2001) Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division “Verrucomicrobia” isolated from rice paddy soil. Int. J. Syst. Evol. Microbiol. 51:1965–1968

    CAS  Article  Google Scholar 

  90. 90.

    Das S, Liu CC, Jean JS, Liu T (2016) Dissimilatory arsenate reduction and in situ microbial activities and diversity in arsenic-rich groundwater of Chianan Plain, Southwestern Taiwan. Environ. Microbiol. 71:365–374. https://doi.org/10.1007/s00248-015-0650-3

    CAS  Article  Google Scholar 

  91. 91.

    Sultana M, Härtig C, Planer-Friedrich B, Seifert J, Schlömann M (2011) Bacterial communities in Bangladesh aquifers differing in aqueous arsenic concentration. Geomicrobiol J. 28:198–211. https://doi.org/10.1080/01490451.2010.490078

    CAS  Article  Google Scholar 

  92. 92.

    Guan X, Yan X, Li Y, Jiang B, Luo X, Chi X (2017) Diversity and arsenic-tolerance potential of bacterial communities from soil and sediments along a gold tailing contamination gradient. Can. J. Microbiol. 63:788–805. https://doi.org/10.1139/cjm-2017-0214

    CAS  Article  PubMed  Google Scholar 

  93. 93.

    Balkwill DL, Fredrickson JK, Romine MF (2006) Sphingomonas and related genera. The prokaryotes. Springer, Berlin, pp 605–629

    Google Scholar 

  94. 94.

    Macur RE, Wheeler JT, McDermott TR, Inskeep WP (2001) Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environ Sci Technol 35:3676–3682. https://doi.org/10.1021/es0105461

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Jackson CR, Dugas SL, Harrison KG (2005) Enumeration and characterization of arsenate-resistant bacteria in arsenic free soils. Soil Biol. Biochem. 37:2319–2322. https://doi.org/10.1016/j.soilbio.2005.04.010

    CAS  Article  Google Scholar 

  96. 96.

    Ambrožič Avguštin J, Žgur Bertok D, Kostanjšek R, Avguštin G (2013) Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov. Antonie van Leeuwenhoek. Int J Gen Mol. Microbiol 103:763–769. https://doi.org/10.1007/s10482-012-9858-0

    CAS  Article  Google Scholar 

  97. 97.

    Gallego V, Sánchez-Porro C, García MT, Ventosa A (2006) Massilia aurea sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 56:2449–2453. https://doi.org/10.1099/ijs.0.64389-0

    CAS  Article  PubMed  Google Scholar 

  98. 98.

    Kleindienst S, Grim S, Sogin M, Bracco A, Crespo-Medina M, Joye SB (2016) Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume. ISME J 10:400–415. https://doi.org/10.1038/ismej.2015.121

    Article  PubMed  Google Scholar 

  99. 99.

    Zhao D, Shen F, Zeng J, Huang R, Yu Z, Wu QL (2016) Network analysis reveals seasonal variation of co-occurrence correlations between Cyanobacteria and other bacterioplankton. Sci. Total Environ. 573:817–825. https://doi.org/10.1016/j.scitotenv.2016.08.150

    CAS  Article  PubMed  Google Scholar 

  100. 100.

    Lupatini M, Suleiman AKA, Jacques RJS, Antoniolli ZI, de Siqueira Ferreira Aã, Kuramae EE, Roesch LFW (2014) Network topology reveals high connectance levels and few key microbial genera within soils. Front Environ Sci 2:1–11. https://doi.org/10.3389/fenvs.2014.00010

    Article  Google Scholar 

  101. 101.

    Wang H, Wei Z, Mei L, Gu J, Yin S, Faust K, Raes J, Deng Y, Wang Y, Shen Q, Yin S (2017) Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. Soil Biol. Biochem. 105:227–235. https://doi.org/10.1016/j.soilbio.2016.11.029

    CAS  Article  Google Scholar 

  102. 102.

    Buckley DH, Huangyutitham V, Hsu S-F, Nelson TA (2007) Stable isotope probing with 15N2 reveals novel noncultivated diazotrophs in soil. Appl. Environ. Microbiol. 73:3196–3204. https://doi.org/10.1128/AEM.02610-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Yang S, Wen X, Shi Y, Liebner S, Jin H, Perfumo A (2016) Hydrocarbon degraders establish at the costs of microbial richness , abundance and keystone taxa after crude oil contamination in permafrost environments. Sci. Rep. 6:37473. https://doi.org/10.1038/srep37473

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Baron EJ, Summanen P, Downes J et al (1989) Bilophila wudsworthiu,gen.nov and sp. nov., a unique gram-negative anerobic rod recovered from appendicitis specimens and human feces. J. Gen. Microbiol. 13:3405–3411

    Google Scholar 

  105. 105.

    Salinas MB, Fardeau ML, Cayol JL et al (2004) Petrobacter succinatimandens gen. nov., sp. nov., a moderately thermophilic, nitrate-reducing bacterium isolated from Australian oil well. Int. J. Syst. Evol. Microbiol. 54:645–649. https://doi.org/10.1099/ijs.0.02732-0

    CAS  Article  PubMed  Google Scholar 

  106. 106.

    Morotomi M, Nagai F, Sakon H, Tanaka R (2009) Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family “Prevotellaceae” isolated from human faeces. Int. J. Syst. Evol. Microbiol. 59:1895–1900. https://doi.org/10.1099/ijs.0.008169-0

    Article  PubMed  Google Scholar 

  107. 107.

    Widdel F (1987) New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch. Microbiol. 148:286–291. https://doi.org/10.1007/BF00456706

    CAS  Article  Google Scholar 

  108. 108.

    Hyde ER, Luk B, Cron S, Kusic L, McCue T, Bauch T, Kaplan H, Tribble G, Petrosino JF, Bryan NS (2014) Characterization of the rat oral microbiome and the effects of dietary nitrate. Free Radic. Biol. Med. 77:249–257. https://doi.org/10.1016/j.freeradbiomed.2014.09.017

    CAS  Article  PubMed  Google Scholar 

  109. 109.

    Mouquet N, Gravel D, Massol F, Calcagno V (2013) Extending the concept of keystone species to communities and ecosystems. Ecol. Lett. 16:1–8. https://doi.org/10.1111/ele.12014

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Hanna Han and her team from Shenzhen Ecogene Co., Ltd. for their technical service.

Funding

This research was funded by GDAS’ Project of Science and Technology development (2017GDASCX-0106, 2019GDASYL-0103047, 2019GDASYL-0302006, and 2018GDASCX-0601), the National Natural Science Foundation of China (41771301, 41420104007), the High-level Leading Talent Introduction Program of GDAS (2016GDASRC-0103), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01Z176).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Weimin Sun.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Li, B., Han, F. et al. Impacts of Arsenic and Antimony Co-Contamination on Sedimentary Microbial Communities in Rivers with Different Pollution Gradients. Microb Ecol 78, 589–602 (2019). https://doi.org/10.1007/s00248-019-01327-5

Download citation

Keywords

  • Antimony
  • Arsenic
  • Co-occurrence network
  • Microbial community
  • Random forest