Advertisement

Microbial Ecology

, Volume 78, Issue 3, pp 714–724 | Cite as

Contrasted Micro-Eukaryotic Diversity Associated with Sphagnum Mosses in Tropical, Subtropical and Temperate Climatic Zones

  • David SingerEmail author
  • Sebastian Metz
  • Fernando Unrein
  • Satoshi Shimano
  • Yuri Mazei
  • Edward A. D. Mitchell
  • Enrique Lara
Soil Microbiology

Abstract

Sphagnum-dominated ecosystem plays major roles as carbon sinks at the global level. Associated microbial communities, in particular, eukaryotes, play significant roles in nutrient fixation and turnover. In order to understand better the ecological processes driven by these organisms, the first step is to characterise these associated organisms. We characterised the taxonomic diversity, and from this, inferred the functional diversity of microeukaryotes in Sphagnum mosses in tropical, subtropical and temperate climatic zones through an environmental DNA diversity metabarcoding survey of the V9 region of the gene coding for the RNA of the small subunit of the ribosomes (SSU rRNA). As microbial processes are strongly driven by temperatures, we hypothesised that saprotrophy would be highest in warm regions, whereas mixotrophy, an optimal strategy in oligotrophic environments, would peak under colder climates. Phylotype richness was higher in tropical and subtropical climatic zones than in the temperate region, mostly due to a higher diversity of animal parasites (i.e. Apicomplexa). Decomposers, and especially opportunistic yeasts and moulds, were more abundant under warmer climates, while mixotrophic organisms were more abundant under temperate climates. The dominance of decomposers, suggesting a higher heterotrophic activity under warmer climates, is coherent with the generally observed faster nutrient cycling at lower latitudes; this phenomenon is likely enhanced by higher inputs of nutrients most probably brought in the system by Metazoa, such as arthropods.

Keywords

Sphagnosphere V9 region of the SSU rRNA gene Protist Mould Yeast Microbial food webs 

Notes

Acknowledgements

We would like to thank Christophe V.W. Seppey for the help on the statistical part and for fruitful discussion. This study was carried out with permission number 24 Uke, Tyouzai-No.4-790 (the Agency for Cultural Affairs, Government of Japan), 416—sampling of protists—(the Board of Education of Kagoshima Prefecture), 141—sampling of protists—(the Board of Education of Yakushima-cho, Kan-kyuu-chi-Koku-Kyo 120821001 (the Kyushu Regional Office, Ministry of Environment, Government of Japan) and Kan-kyuu-chi-Koku-Kyo 120821001 (the National park and conservation Maintenance Division, the Kyushu Regional Office, Ministry of Environment, Government of Japan).

Funding information

This work was funded by the Swiss National Science Foundation project no. 310003A 143960 and a project “Atraccion de talento investigador” by the Consejería de Educación, Juventud y Deporte, Comunidad de Madrid (Spain) no 2017-T1/AMB-5210 to EL, a short-term fellowship from the European Molecular Biology Organization (EMBO) ASTF 520 - 2015, a CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina) doctoral fellowship, the Argentinean project FONCyT PICT-2014-1290 to SM, the University of Neuchâtel and Hosei (for field work in Japan to EM and SS). FU is a CONICET researcher.

Supplementary material

248_2019_1325_MOESM1_ESM.docx (1.6 mb)
ESM 1 (DOCX 1598 kb)

References

  1. 1.
    de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, Lara E, Berney C, le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury JM, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horak A, Jaillon O, Lima-Mendez G, Luke J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Tara Oceans Coordinators, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E, Boss E, Follows M, Karp-Boss L, Krzic U, Reynaud EG, Sardet C, Sullivan MB, Velayoudon D (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605.  https://doi.org/10.1126/science.1261605 CrossRefPubMedGoogle Scholar
  2. 2.
    Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, Singer D, Mayor J, Bunge J, Sernaker S, Siemensmeyer T, Trautmann I, Romac S, Berney C, Kozlov A, Mitchell EAD, Seppey CVW, Egge E, Lentendu G, Wirth R, Trueba G, Dunthorn M (2017) Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol 1:0091.  https://doi.org/10.1038/s41559-017-0091 CrossRefGoogle Scholar
  3. 3.
    Geisen S (2016) Thorough high-throughput sequencing analyses unravels huge diversities of soil parasitic protists. Environ Microbiol 18:1669–1672.  https://doi.org/10.1111/1462-2920.13309 CrossRefPubMedGoogle Scholar
  4. 4.
    Seppey CVW, Singer D, Dumack K, Fournier B, Belbahri L, Mitchell EAD, Lara E (2017) Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling. Soil Biol Biochem 112:68–76.  https://doi.org/10.1016/j.soilbio.2017.05.002 CrossRefGoogle Scholar
  5. 5.
    Xiong W, Jousset A, Guo S, Karlsson I, Zhao Q, Wu H, Kowalchuk GA, Shen Q, Li R, Geisen S (2018) Soil protist communities form a dynamic hub in the soil microbiome. ISME J 12:634–638.  https://doi.org/10.1038/ismej.2017.171 CrossRefPubMedGoogle Scholar
  6. 6.
    Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, Fernández LD, Jousset A, Krashevska V, Singer D, Spiegel FW, Walochnik J, Lara E (2018) Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev 42:293–323.  https://doi.org/10.1093/femsre/fuy006 CrossRefPubMedGoogle Scholar
  7. 7.
    Simek K, Vrba J, Pernthaler J, Posch T, Hartman P, Nedoma J, Psenner R (1997) Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl Environ Microbiol 63:587–595PubMedPubMedCentralGoogle Scholar
  8. 8.
    Kosakyan A, Mulot M, Mitchell EAD, Lara E (2015) Environmental DNA COI barcoding for quantitative analysis of protists communities: a test using the Nebela collaris complex (Amoebozoa; Arcellinida; Hyalospheniidae). Eur J Protistol 51:311–320.  https://doi.org/10.1016/j.ejop.2015.06.005 CrossRefPubMedGoogle Scholar
  9. 9.
    Giner CR, Forn I, Romac S et al (2016) Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.00560-16
  10. 10.
    Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248CrossRefGoogle Scholar
  11. 11.
    Lara E, Seppey CVW, González Garraza G et al (2015) Planktonic eukaryote molecular diversity: discrimination of minerotrophic and ombrotrophic peatland pools in Tierra del Fuego (Argentina). J Plankton Res 37:645–655CrossRefGoogle Scholar
  12. 12.
    Nunan N (2017) The microbial habitat in soil: scale, heterogeneity and functional consequences. J Plant Nutr Soil Sci 180:425–429CrossRefGoogle Scholar
  13. 13.
    Gorham E (1957) The development of peat lands. Q Rev Biol 32:145–166CrossRefGoogle Scholar
  14. 14.
    Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W (2006) Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol 72:2110–2117CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jassey VEJ, Chiapusio G, Binet P, Buttler A, Laggoun-Défarge F, Delarue F, Bernard N, Mitchell EAD, Toussaint ML, Francez AJ, Gilbert D (2013) Above-and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions. Glob Chang Biol 19:811–823CrossRefPubMedGoogle Scholar
  16. 16.
    Kivinen E, Pakarinen P (1981) Geographical distribution of peat resources and major peatland complex types in the world. Ann Acad Sci Fenn 132:5–28. Suomalainen tiedeakatemia, HelsinkiGoogle Scholar
  17. 17.
    Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195CrossRefPubMedGoogle Scholar
  18. 18.
    Yu Z, Beilman DW, Frolking S, MacDonald GM, Roulet NT, Camill P, Charman DJ (2011) Peatlands and their role in the global carbon cycle. EOS Trans Am Geophys Union 92:97–98.  https://doi.org/10.1029/2011EO120001 CrossRefGoogle Scholar
  19. 19.
    Dorrepaal E, Toet S, van Logtestijn RSP, Swart E, van de Weg MJ, Callaghan TV, Aerts R (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–619CrossRefGoogle Scholar
  20. 20.
    Jassey VEJ, Signarbieux C, Hättenschwiler S, Bragazza L, Buttler A, Delarue F, Fournier B, Gilbert D, Laggoun-Défarge F, Lara E, T. E. Mills R, Mitchell EAD, Payne RJ, Robroek BJM (2015) An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming. Sci Rep 5:16931.  https://doi.org/10.1038/srep16931 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Thormann MN (2006) Diversity and function of fungi in peatlands: a carbon cycling perspective. Can J Soil Sci 86:281–293.  https://doi.org/10.4141/S05-082 CrossRefGoogle Scholar
  22. 22.
    Bragazza L, Buttler A, Robroek BJM, Albrecht R, Zaccone C, Jassey VEJ, Signarbieux C (2016) Persistent high temperature and low precipitation reduce peat carbon accumulation. Glob Chang Biol 22:4114–4123CrossRefPubMedGoogle Scholar
  23. 23.
    Jassey J, Vincent EJ, Reczuga MK, Zielińska M et al (2018) Tipping point in plant–fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration. Glob Chang Biol 24:972–986CrossRefPubMedGoogle Scholar
  24. 24.
    Ivanov OV, Maslova EV, Ignatov MS (2018) Development of the sphagnoid areolation pattern in leaves of Palaeozoic protosphagnalean mosses. Ann BotGoogle Scholar
  25. 25.
    Ketcheson SJ, Price JS (2014) Characterization of the fluxes and stores of water within newly formed Sphagnum moss cushions and their environment. Ecohydrology 7:771–782CrossRefGoogle Scholar
  26. 26.
    Ah-Peng C, Cardoso AW, Flores O, West A, Wilding N, Strasberg D, Hedderson TAJ (2017) The role of epiphytic bryophytes in interception, storage, and the regulated release of atmospheric moisture in a tropical montane cloud forest. J Hydrol 548:665–673CrossRefGoogle Scholar
  27. 27.
    Kettridge N, Waddington JM (2014) Towards quantifying the negative feedback regulation of peatland evaporation to drought. Hydrol Process 28:3728–3740CrossRefGoogle Scholar
  28. 28.
    Rydin H (1993) Interspecific competition between Sphagnum mosses on a raised bog. Oikos 66:413–423CrossRefGoogle Scholar
  29. 29.
    Steinberg CEW, Kamara S, Prokhotskaya VY et al (2006) Dissolved humic substances–ecological driving forces from the individual to the ecosystem level? Freshw Biol 51:1189–1210CrossRefGoogle Scholar
  30. 30.
    Thormann MN, Rice AV (2007) Fungi from peatlands. Fungal Divers 24:299Google Scholar
  31. 31.
    Singer D, Lara E, Steciow MM, Seppey CVW, Paredes N, Pillonel A, Oszako T, Belbahri L (2016) High-throughput sequencing reveals diverse oomycete communities in oligotrophic peat bog micro-habitat. Fungal Ecol 23:42–47CrossRefGoogle Scholar
  32. 32.
    Gilbert D, Mitchell EAD (2006) Microbial diversity in Sphagnum peatlands. Dev Earth Surf Process 9:287–318CrossRefGoogle Scholar
  33. 33.
    Lara E, Mitchell EAD, Moreira D, García PL (2011) Highly diverse and seasonally dynamic protist community in a pristine peat bog. Protist 162:14–32CrossRefPubMedGoogle Scholar
  34. 34.
    Graham LE, Graham JM, Knack JJ, Trest MT, Piotrowski MJ, Arancibia-Avila P (2017) A sub-Antarctic peat moss metagenome indicates microbiome resilience to stress and biogeochemical functions of early Paleozoic terrestrial ecosystems. Int J Plant Sci 178:618–628CrossRefGoogle Scholar
  35. 35.
    Lindo Z, Gonzalez A (2010) The bryosphere: an integral and influential component of the Earth’s biosphere. Ecosystems 13:612–627CrossRefGoogle Scholar
  36. 36.
    Jassey VEJ, Gilbert D, Binet P, Toussaint ML, Chiapusio G (2011) Effect of a temperature gradient on Sphagnum fallax and its associated living microbial communities: a study under controlled conditions. Can J Microbiol 57:226–235CrossRefPubMedGoogle Scholar
  37. 37.
    Mitchell EAD, Bragazza L, Gerdol R (2004) Testate amoebae (Protista) communities in Hylocomium splendens (Hedw.) BSG (Bryophyta): relationships with altitude, and moss elemental chemistry. Protist 155:423–436CrossRefPubMedGoogle Scholar
  38. 38.
    Heger TJ, Derungs N, Theurillat J-P, Mitchell EAD (2016) Testate amoebae like it hot: species richness decreases along a subalpine-alpine altitudinal gradient in both natural Calluna vulgaris litter and transplanted Minuartia sedoides cushions. Microb Ecol 71:725–734CrossRefPubMedGoogle Scholar
  39. 39.
    Selosse M-A, Charpin M, Not F (2017) Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol Lett 20:246–263CrossRefPubMedGoogle Scholar
  40. 40.
    Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4:e6372CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M (2014) Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2:e593CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Schiaffino MR, Lara E, Fernández LD, Balagué V, Singer D, Seppey CCW, Massana R, Izaguirre I (2016) Microbial eukaryote communities exhibit robust biogeographical patterns along a gradient of Patagonian and Antarctic lakes. Environ Microbiol 18:5249–5264CrossRefPubMedGoogle Scholar
  43. 43.
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, de Vargas C, Decelle J, del Campo J, Dolan JR, Dunthorn M, Edvardsen B, Holzmann M, Kooistra WHCF, Lara E, le Bescot N, Logares R, Mahé F, Massana R, Montresor M, Morard R, Not F, Pawlowski J, Probert I, Sauvadet AL, Siano R, Stoeck T, Vaulot D, Zimmermann P, Christen R (2012) The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41:D597–D604CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pearson WR (2014) BLAST and FASTA similarity searching for multiple sequence alignment. Methods Mol Biol 1079:75–101Google Scholar
  45. 45.
    Oksanen J, Blanchet FG, Kindt R (2015) Vegan: commity ecology package. R package version 2.3–0Google Scholar
  46. 46.
    Misner I, Blouin N, Leonard G et al (2014) The secreted proteins of Achlya hypogyna and Thraustotheca clavata identify the ancestral oomycete secretome and reveal gene acquisitions by horizontal gene transfer. Genome Biol Evol 7:120–135CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sanders RW (1991) Mixotrophic protists in marine and freshwater ecosystems. J Protozool 38:76–81CrossRefGoogle Scholar
  48. 48.
    Shiratori T, Ishida K (2016) A new heterotrophic Cryptomonad: Hemiarma marina ng, n. sp. J Eukaryot Microbiol 63:804–812CrossRefPubMedGoogle Scholar
  49. 49.
    Gómez F (2012) A quantitative review of the lifestyle, habitat and trophic diversity of dinoflagellates (Dinoflagellata, Alveolata). Syst Biodivers 10:267–275CrossRefGoogle Scholar
  50. 50.
    Adl Sina M, Simpson Alastair GB, Lane Christopher E et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–514.  https://doi.org/10.1111/j.1550-7408.2012.00644.x CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Boenigk J, Pfandl K, Stadler P, Chatzinotas A (2005) High diversity of the ‘Spumella-like’ flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ Microbiol 7:685–697CrossRefPubMedGoogle Scholar
  52. 52.
    Beisser D, Graupner N, Bock C, Wodniok S, Grossmann L, Vos M, Sures B, Rahmann S, Boenigk J (2017) Comprehensive transcriptome analysis provides new insights into nutritional strategies and phylogenetic relationships of chrysophytes. PeerJ 5:e2832CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618CrossRefPubMedGoogle Scholar
  54. 54.
    Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  55. 55.
    Aguilar M, Lado C (2012) Ecological niche models reveal the importance of climate variability for the biogeography of protosteloid amoebae. ISME J 6:1506–1514CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lara E, Roussel-Delif L, Fournier B, Wilkinson DM, Mitchell EAD (2015) Soil microorganisms behave like macroscopic organisms: patterns in the global distribution of soil euglyphid testate amoebae. J Biogeogr 43:520–532.  https://doi.org/10.1111/jbi.12660 CrossRefGoogle Scholar
  57. 57.
    Team RC (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 2013. ISBN 3-900051-07-0Google Scholar
  58. 58.
    Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefPubMedGoogle Scholar
  59. 59.
    Chambers JM, Hastie TJ (1992) Statistical models in S. Wadsworth & Brooks/Cole, Pacific GroveGoogle Scholar
  60. 60.
    Sachs L, Hedderich J (2013) Angewandte statistik: Methodensammlung mit R (in German), 12th edn. Springer-Verlag, Berlin-Heidelberg-New YorkGoogle Scholar
  61. 61.
    De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574CrossRefGoogle Scholar
  62. 62.
    Warnes GR, Bolker B, Bonebakker L et al (2015) gplots: various R programming tools for plotting data. R package version 2.17. 0. Computer softwareGoogle Scholar
  63. 63.
    Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2015) Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–1536CrossRefGoogle Scholar
  64. 64.
    Debroas D, Domaizon I, Humbert J-F et al (2017) Overview of freshwater microbial eukaryotes diversity: a first analysis of publicly available metabarcoding data. FEMS Microbiol Ecol 93:fix023CrossRefGoogle Scholar
  65. 65.
    Izaguirre I, Saad JF, Schiaffino MR, Vinocur A, Tell G, Sánchez ML, Allende L, Sinistro R (2016) Drivers of phytoplankton diversity in Patagonian and Antarctic lakes across a latitudinal gradient (2150 km): the importance of spatial and environmental factors. Hydrobiologia 764:157–170CrossRefGoogle Scholar
  66. 66.
    Stomp M, Huisman J, Mittelbach GG, Litchman E, Klausmeier CA (2011) Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 92:2096–2107CrossRefPubMedGoogle Scholar
  67. 67.
    Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, Fierer N (2013) Global biogeography of highly diverse protistan communities in soil. ISME J 7:652–659CrossRefPubMedGoogle Scholar
  68. 68.
    Azovsky AI, Tikhonenkov DV, Mazei YA (2016) An estimation of the global diversity and distribution of the smallest eukaryotes: biogeography of marine benthic heterotrophic flagellates. Protist 167:411–424CrossRefPubMedGoogle Scholar
  69. 69.
    Grabda J (1991) Marine fish parasitology: an outline. VCH Publishers, New YorkGoogle Scholar
  70. 70.
    Mendoza L, Taylor JW, Ajello L (2002) The class Mesomycetozoea: a heterogeneous group of microorganisms at the animal-fungal boundary. Annu Rev Microbiol 56:315–344CrossRefPubMedGoogle Scholar
  71. 71.
    Hájek M, Horsák M, Hájková P, Dítě D (2006) Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect Plant Ecol Evol Syst 8:97–114CrossRefGoogle Scholar
  72. 72.
    Heal OW (1964) Observations on the seasonal and spatial distribution of Testacea (Protozoa: Rhizopoda) in Sphagnum. J Anim Ecol 33:395–412CrossRefGoogle Scholar
  73. 73.
    Opravilová V, Hajek M (2006) The variation of testacean assemblages (Rhizopoda) along the complete baserichness gradient in fens: a case study from the Western Carpathians. Acta Protozool 45:191Google Scholar
  74. 74.
    Lamentowicz M, Lamentowicz Ł, van der Knaap WO, Gąbka M, Mitchell EAD (2010) Contrasting species—environment relationships in communities of testate amoebae, bryophytes and vascular plants along the Fen–Bog gradient. Microb Ecol 59:499–510CrossRefPubMedGoogle Scholar
  75. 75.
    Koenig I, Feldmeyer-Christe E, Mitchell EAD (2015) Comparative ecology of vascular plant, bryophyte and testate amoeba communities in four Sphagnum peatlands along an altitudinal gradient in Switzerland. Ecol Indic 54:48–59CrossRefGoogle Scholar
  76. 76.
    Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S (2015) First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2. New Phytol 205:743–756CrossRefPubMedGoogle Scholar
  77. 77.
    Richardson M (2009) The ecology of the Zygomycetes and its impact on environmental exposure. Clin Microbiol Infect 15:2–9CrossRefPubMedGoogle Scholar
  78. 78.
    Tedersoo L, Bahram M, Põlme S et al (2014) Global diversity and geography of soil fungi. Science 346:1256688CrossRefGoogle Scholar
  79. 79.
    Walz J, Knoblauch C, Böhme L, Pfeiffer E-M (2017) Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils-impact of oxygen availability, freezing and thawing, temperature, and labile organic matter. Soil Biol Biochem 110:34–43CrossRefGoogle Scholar
  80. 80.
    Sharma PD (2005) Fungi and allied organisms. Alpha Science International Ltd, OxfordGoogle Scholar
  81. 81.
    Wilken S, Huisman J, Naus-Wiezer S, Van Donk E (2013) Mixotrophic organisms become more heterotrophic with rising temperature. Ecol Lett 16:225–233CrossRefPubMedGoogle Scholar
  82. 82.
    Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Soil Biodiversity, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
  2. 2.Department of Zoology, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
  3. 3.Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICETBuenos AiresArgentina
  4. 4.Science Research CenterHosei UniversityTokyoJapan
  5. 5.Department of HydrobiologyLomonosov Moscow State UniversityMoscowRussia
  6. 6.Jardin Botanique de NeuchâtelNeuchâtelSwitzerland
  7. 7.Real Jardín Botánico, CSICMadridSpain

Personalised recommendations