Skip to main content

Latitudinal and Vertical Variation of Synechococcus Assemblage Composition Along 170° W Transect From the South Pacific to the Arctic Ocean

Abstract

Synechococcus is one of the most widely distributed and abundant picocyanobacteria in the global oceans. Although latitudinal variation of Synechococcus assemblage in marine surface waters has been observed, few studies compared Synechococcus assemblage composition in surface and subsurface waters at the basin scale. Here, we report marine Synechococcus diversity in the surface and deep chlorophyll maximum (DCM) layers along 170° W from the South Pacific to the Arctic Ocean in summer. Along the transect, spatial niche partitioning of Synechococcus lineages in the surface waters was clearly observed. Species richness of surface Synechococcus assemblage was positively correlated with water temperature. Clade CRD1 was dominant in the areas (15° S–10° N and 35–40° N) associated with upwelling, and there were 3 different subclades with distinct distribution. CRD1-A was restricted in the North Equatorial Current (5–10° N), CRD1-B dominated in the equatorial upwelling region (15° S–0.17° N), and CRD1-C was only distributed in the North Pacific Current (35–40° N). Similarities between the Synechococcus assemblages in the surface and DCM layers were high at the upwelling regions and areas where the mixed layer was deep, while low in the Subtropical Gyres with strong stratification. Clade I, CRD1-B, and CRD1-C were major Synechococcus lineages in the DCM layer. In particular, clade I, which is composed of 7 subclades with distinct thermal niches, was widely distributed in the DCM layer. Overall, our results provide new insights into not only the latitudinal distribution of Synechococcus assemblages, but also their vertical variation in the central Pacific.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL, Jiao N, Karl DM, Li WK, Lomas MW, Veneziano D, Vera CS, Vrugt JA, Martiny AC (2013) Present and future global distributions of the marine cyanobacteria. Prochlorococcus and Synechococcus. Proc Natl Acad Sci 110:9824–9829

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Partensky F, Blanchot J, Vaulot D (1999) Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bulletin-institut oceanographique monaco-numero special 457–476

  3. Six C, Thomas JC, Garczarek L, Ostrowski M, Dufresne A, Blot N, Scanlan DJ, Partensky F (2007) Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol 8:R259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mazard S, Ostrowski M, Partensky F, Scanlan DJ (2012) Multi-locus sequence analysis, taxonomic resolution and biogeography of marine Synechococcus. Environ Microbiol 14:372–386

    Article  PubMed  CAS  Google Scholar 

  5. Rocap G, Distel DL, Waterbury JB, Chisholm SW (2002) Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68:1180–1191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Xia X, Partensky F, Garczarek L, Suzuki K, Guo C, Yan Cheung S, Liu H (2017) Phylogeography and pigment type diversity of Synechococcus cyanobacteria in surface waters of the northwestern pacific ocean. Environ Microbiol 19:142–158

    Article  PubMed  CAS  Google Scholar 

  7. Farrant GK, Dore H, Cornejo-Castillo FM, Partensky F, Ratin M, Ostrowski M, Pitt FD, Wincker P, Scanlan DJ, Iudicone D, Acinas SG, Garczarek L (2016) Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc Natl Acad Sci 113:E3365–E3374

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Huang S, Wilhelm SW, Harvey HR, Taylor K, Jiao N, Chen F (2012) Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J 6:285–297

    Article  PubMed  CAS  Google Scholar 

  9. Toledo G, Palenik B (1997) Synechococcus diversity in the California current as seen by RNA polymerase (rpoC1) gene sequences of isolated strains. Appl Environ Microbiol 63:4298–4303

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Xia X, Guo W, Tan S, Liu H (2017) Synechococcus assemblages across the salinity gradient in a salt wedge estuary. Front Microbiol 8:1254

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cai H, Wang K, Huang S, Jiao N, Chen F (2010) Distinct patterns of picocyanobacterial communities in winter and summer in the Chesapeake Bay. Appl Environ Microbiol 76:2955–2960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Haverkamp TH, Schouten D, Doeleman M, Wollenzien U, Huisman J, Stal LJ (2009) Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea. ISME J 3:397–408

    Article  PubMed  CAS  Google Scholar 

  13. Jing H, Liu H, Suzuki K (2009) Phylogenetic diversity of marine Synechococcus spp. in the Sea of Okhotsk. Aquat Microb Ecol 56:55–63

    Article  Google Scholar 

  14. Choi DH, Noh JH (2009) Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea. FEMS Microbiol Ecol 69:439–448

    Article  PubMed  CAS  Google Scholar 

  15. Ahlgren NA, Rocap G (2012) Diversity and distribution of marine Synechococcus: multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front Microbiol 3:213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sohm JA, Ahlgren NA, Thomson ZJ, Williams C, Moffett JW, Saito MA, Webb EA, Rocap G (2016) Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J 10:333–345

    Article  PubMed  CAS  Google Scholar 

  17. Pittera J, Humily F, Thorel M, Grulois D, Garczarek L, Six C (2014) Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus. ISME J 8:1221–1236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Paulsen ML, Doré H, Garczarek L, Seuthe L, Müller O, Sandaa R-A, Bratbak G, Larsen A (2016) Synechococcus in the Atlantic gateway to the Arctic Ocean. Front Mar Sci 3:191

    Article  Google Scholar 

  19. Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, Not F, Massana R, Ulloa O, Scanlan DJ (2008) Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10:147–161

    PubMed  Google Scholar 

  20. Ahlgren NA, Noble A, Patton AP, Roache-Johnson K, Jackson L, Robinson D, McKay C, Moore LR, Saito MA, Rocap G (2014) The unique trace metal and mixed layer conditions of the Costa Rica upwelling dome support a distinct and dense community of Synechococcus. Limnol Oceanogr 59:2166–2184

    Article  CAS  Google Scholar 

  21. Ahlgren NA, Rocap G (2006) Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies. Appl Environ Microbiol 72:7193–7204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Moore LR, Post AF, Rocap G, Chisholm SW (2002) Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol Oceanogr 47:989–996

    Article  CAS  Google Scholar 

  23. Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–309

    Article  Google Scholar 

  24. Ladau J, Sharpton TJ, Finucane MM, Jospin G, Kembel SW, O'dwyer J, Koeppel AF, Green JL, Pollard KS (2013) Global marine bacterial diversity peaks at high latitudes in winter. ISME J 7:1669–1677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737–1740

    Article  PubMed  CAS  Google Scholar 

  26. Post AF, Penno S, Zandbank K, Paytan A, Huse SM, Welch DM (2011) Long term seasonal dynamics of Synechococcus population structure in the Gulf of Aqaba, Northern Red Sea. Front Microbiol 2:131. https://doi.org/10.3389/fmicb.2011.00131

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xia X, Vidyarathna NK, Palenik B, Lee P, Liu H (2015) Comparison of the seasonal variations of Synechococcus assemblage structures in estuarine waters and coastal waters of Hong Kong. Appl Environ Microbiol 81:7644–7655. https://doi.org/10.1128/AEM.01895-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tai V, Palenik B (2009) Temporal variation of Synechococcus clades at a coastal Pacific Ocean monitoring site. ISME J 3:903–915. https://doi.org/10.1038/ismej.2009.35

    Article  PubMed  CAS  Google Scholar 

  29. Lavin P, Gomez P, Gonzalez B, Ulloa O (2008) Diversity of the marine picocyanobacteria Prochlorococcus and Synechococcus assessed by terminal restriction fragment length polymorphisms of 16S-23S rRNA internal transcribed spacer sequences. Rev Chil Hist Nat 81

  30. Zeidner G, Béjà O (2004) The use of DGGE analyses to explore eastern Mediterranean and Red Sea marine picophytoplankton assemblages. Environ Microbiol 6:528–534

    Article  PubMed  CAS  Google Scholar 

  31. Mühling M, Fuller NJ, Somerfield PJ, Post AF, Wilson WH, Scanlan DJ, Joint I, Mann NH (2006) High resolution genetic diversity studies of marine Synechococcus isolates using rpoC1-based restriction fragment length polymorphism. Aquat Microb Ecol 45:263–275

    Article  Google Scholar 

  32. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 95:14863–14868. https://doi.org/10.1073/pnas.95.25.14863

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047

    Article  PubMed  CAS  Google Scholar 

  35. West NJ, Scanlan DJ (1999) Niche-partitioning of Prochlorococcuspopulations in a stratified water column in the eastern North Atlantic Ocean. Appl Environ Microbiol 65:2585–2591

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Ahlgren NA, Rocap G, Chisholm SW (2006) Measurement of Prochlorococcus ecotypes using real-time polymerase chain reaction reveals different abundances of genotypes with similar light physiologies. Environ Microbiol 8:441–454

    Article  PubMed  CAS  Google Scholar 

  37. Longhurst AR (2007) Ecological geography of the sea. Elsevier, Amsterdam

    Book  Google Scholar 

  38. Endo H, Ogata H, Suzuki K (2018) Contrasting biogeography and diversity patterns between diatoms and haptophytes in the Central Pacific Ocean. Sci Rep 8:10916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Endo H, Yoshimura T, Kataoka T, Suzuki K (2013) Effects of CO2 and iron availability on phytoplankton and eubacterial community compositions in the northwest subarctic Pacific. J Exp Mar Biol Ecol 439:160–175

    Article  CAS  Google Scholar 

  40. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. vol. 41. Information Retrieval Ltd., London, pp 95–98

  42. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J (2017) Package ‘corrplot’. Statistician 56:316–324

  44. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package. Community ecology package 10:631–637

  45. Shiozaki T, Bombar D, Riemann L, Sato M, Hashihama F, Kodama T, Tanita I, Takeda S, Saito H, Hamasaki K (2018) Linkage between dinitrogen fixation and primary production in the oligotrophic South Pacific Ocean. Glob Biogeochem Cycles 32:1028–1044

    Article  CAS  Google Scholar 

  46. Shiozaki T, Ijichi M, Isobe K, Hashihama F, Nakamura K-i, Ehama M, Hayashizaki K-i, Takahashi K, Hamasaki K, Furuya K (2016) Nitrification and its influence on biogeochemical cycles from the equatorial Pacific to the Arctic Ocean. ISME J 10:2184–2197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Behrenfeld MJ, Bale AJ, Kolber ZS, Aiken J, Falkowski PG (1996) Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383:508–511

    Article  CAS  Google Scholar 

  48. Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Glob Biogeochem Cycles 20

  49. Polovina JJ, Howell EA, Kobayashi DR, Seki MP (2017) The transition zone chlorophyll front updated: advances from a decade of research. Prog Oceanogr 150:79–85

    Article  Google Scholar 

  50. Stramma L, Peterson RG, Tomczak M (1995) The South Pacific current. J Phys Oceanogr 25:77–91

    Article  Google Scholar 

  51. Grébert T, Doré H, Partensky F, Farrant GK, Boss ES, Picheral M, Guidi L, Pesant S, Scanlan DJ, Wincker P (2018) Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc Natl Acad Sci 201717069

  52. Gutiérrez-Rodríguez A, Slack G, Daniels EF, Selph KE, Palenik B, Landry MR (2014) Fine spatial structure of genetically distinct picocyanobacterial populations across environmental gradients in the Costa Rica Dome. Limnol Oceanogr 59:705–723

    Article  CAS  Google Scholar 

  53. Aminov RI (2011) Horizontal gene exchange in environmental microbiota. Front Microbiol 2:158. https://doi.org/10.3389/fmicb.2011.00158

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M (2012) Drift-barrier hypothesis and mutation-rate evolution. Proc Natl Acad Sci 109:18488–18492

    Article  PubMed  PubMed Central  Google Scholar 

  55. Choi DH, Selph KE, Noh JH (2015) Niche partitioning of picocyanobacterial lineages in the oligotrophic northwestern Pacific Ocean. Algae 30:223–232

    Article  CAS  Google Scholar 

  56. Zwirglmaier K, Heywood JL, Chamberlain K, Woodward EMS, Zubkov MV, Scanlan DJ (2007) Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean. Environ Microbiol 9:1278–1290

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the captain, officers, and crew of the R/V Hakuho Maru for their tremendous assistance during the cruises. We are grateful to Drs. Koji Sugie and Jun Nishioka for the field sampling and nutrient analysis, respectively. This study was conducted within the framework of the JST-CREST program “Establishment of core technology for the preservation of marine diversity and ecosystems”.

Funding

The JST-CREST Program (JPMJCR11A5), JSPS Grant-in-Aid for Scientific Research on Innovative Areas (#24121004), Research Grant Council of Hong Kong (16128416 and 16101917), and the National Key Scientific Research Project (2015CB954003) sponsored by the Ministry of Science and Technology of the PRC partly funded this study. This work was also supported by CAS Pioneer Hundred Talents Program and the South China Sea Institute of Oceanography, CAS for the project “Different niches of Synechococcus ecotypes (50603-64)”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Koji Suzuki or Hongbin Liu.

Electronic supplementary material

ESM 1

(DOCX 1280 kb)

ESM 2

(DOCX 44 kb)

ESM 3

(FAS 32 kb)

ESM 4

(FAS 35 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xia, X., Cheung, S., Endo, H. et al. Latitudinal and Vertical Variation of Synechococcus Assemblage Composition Along 170° W Transect From the South Pacific to the Arctic Ocean. Microb Ecol 77, 333–342 (2019). https://doi.org/10.1007/s00248-018-1308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1308-8

Keywords

  • Horizontal and vertical variations
  • Synechococcus assemblage richness
  • CRD1
  • Clade I
  • Central Pacific Ocean