Advertisement

Bacterial Communities in Areas of Oil and Methane Seeps in Pelagic of Lake Baikal

  • Aleksandra S. Zakharenko
  • Yuriy P. Galachyants
  • Igor V. Morozov
  • Olga V. Shubenkova
  • Alexey A. Morozov
  • Vyacheslav G. Ivanov
  • Nikolay V. Pimenov
  • Andrey Y. Krasnopeev
  • Tamara I. Zemskaya
Microbiology of Aquatic Systems

Abstract

We have assessed the diversity of bacteria near oil-methane (area I) and methane (area II) seeps in the pelagic zone of Lake Baikal using massive parallel sequencing of 16S rRNA, pmoA, and mxaF gene fragments amplified from total DNA. At depths from the surface to 100 m, sequences belonging to Cyanobacteria dominated. In the communities to a depth of 200 m of the studied areas, Proteobacteria dominated the deeper layers of the water column. Alphaproteobacteria sequences were predominant in the community near the oil-methane seep, while the community near the methane seep was characterized by the prevalence of Alpha- and Gammaproteobacteria. Among representatives of these classes, type I methanotrophs prevailed in the 16S rRNA gene libraries from the near–bottom area, and type II methanotrophs were detected in minor quantities at different depths. In the analysis of the libraries of the pmoA and mxaF functional genes, we observed the different taxonomic composition of methanotrophic bacteria in the surface and deep layers of the water column. All pmoA sequences from area I were type II methanotrophs and were detected at a depth of 300 m, while sequences of type I methanotrophs were the most abundant in deep layers of the water column of area II. All mxaF gene sequences belonged to Methylobacterium representatives. Based on comparative analyses of 16S rRNA, pmoA, and mxaF gene fragment libraries, we suggest that there must be a wider spectrum of functional genes facilitating methane oxidation that were not detected with the primers used.

Keywords

Water column Diversity Methanotrophic Methylotrophic bacteria Lake Baikal 

Notes

Acknowledgements

The authors gratefully acknowledge Irkutsk Supercomputer Center of SB RAS for providing the access to HPC-cluster «Akademik V.M. Matrosov». We also thank to Ivan Sidorov, system administrator of HPC-cluster, for help in performing computations.

Funding Information

The work was supported by the State Task for Limnological Institute SB RAS No. 0345–2016–0007, the ofi-m RFBR grant No 17-29-05040 and mol-a RFBR grant No 18-34-00442.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary material

248_2018_1299_MOESM1_ESM.taxonomy (265 kb)
File S1 Reference taxonomy of pmoA sequence fragments (TAXONOMY 265 kb)
248_2018_1299_MOESM2_ESM.fna (8.5 mb)
File S2 Reference alignment of pmoA sequence fragments (FNA 8691 kb)
248_2018_1299_Fig7_ESM.png (266 kb)
Fig. S1

Rarefaction curves (PNG 265 kb)

248_2018_1299_MOESM3_ESM.tif (760 kb)
High resolution image (TIF 759 kb)
248_2018_1299_Fig8_ESM.png (174 kb)
Fig. S2

Phylogenetic tree of the phylum Cyanobacteria based on the analysis of nucleotide sequences of the V2–V3 regions of the 16S rRNA gene obtained from the total DNA of water column of Lake Baikal. The tree was constructed using the neighbor-joining (NJ) method. Bootstrap analysis provided probability assessment of individual nodes; the values above 60% are shown. The scale is 0.01 (PNG 173 kb)

248_2018_1299_MOESM4_ESM.tif (636 kb)
High resolution image (TIF 636 kb)
248_2018_1299_Fig9_ESM.png (1.1 mb)
Fig. S3

Phylogenetic tree of the phylum Verrucomicrobia based on the analysis of nucleotide sequences of the V2–V3 regions of the 16S rRNA gene obtained from the total DNA of water column of Lake Baikal. The tree was constructed using the neighbor-joining (NJ) method. Bootstrap analysis provided probability assessment of individual nodes; the values above 60% are shown. The scale is 0.01 (PNG 1125 kb)

248_2018_1299_MOESM5_ESM.tif (3.3 mb)
High resolution image (TIF 3354 kb)

References

  1. 1.
    Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513.  https://doi.org/10.1021/cr050362v CrossRefPubMedGoogle Scholar
  2. 2.
    Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50.  https://doi.org/10.1126/science.1196808 CrossRefPubMedGoogle Scholar
  3. 3.
    Verpoorter C, Kutser T, Seekell DA, Tranvik LJ (2014) A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett 41:6396–6402.  https://doi.org/10.1002/2014GL060641 CrossRefGoogle Scholar
  4. 4.
    Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, Dlugokencky EJ, Etiope G, Bastviken D, Houweling S, Janssens-Maenhout G, Tubiello FN, Castaldi S, Jackson RB, Alexe M, Arora VK, Beerling DJ, Bergamaschi P, Blake DR, Brailsford G, Brovkin V, Bruhwiler L, Crevoisier C, Crill P, Curry C, Frankenberg C, Gedney N, Höglund-Isaksson L, Ishizawa M, Ito A, Joos F, Kim HS, Kleinen T, Krummel P, Lamarque JF, Langenfelds R, Locatellil R, Machida T, Maksyutov S, McDonald KC, Marshall J, Melton JR, Morino I, O'Doherty S, Parmentier FJW, Patra PK, Peng C, Pengl S, Peters GP, Pisonl I, Prigent C, Prinn R, Ramonetl M, Riley WJ, Saito M, Schroeder R, Simpson IJ, Spahni R, Steele P, Takizawa A, Thornton BF, Tian H, Tohjima Y, Viovyl N, Voulgarakis A, van Weele M, van der Werf G, Weiss R, Wiedinmyer C, Wilton DJ, Wiltshire A, Worthy D, Wunch DB, Xu X, Yoshida Y, Zhang B, Zhang Z, Zhu Q (2016) The global methane budget: 2000–2012. Earth Syst Sci Data 8:697–751.  https://doi.org/10.5194/essd-8-697-2016 CrossRefGoogle Scholar
  5. 5.
    Zimov SA, Schuur EAG, Chapin FSIII (2006) Permafrost global carbon budget. Science 312:1612–1613.  https://doi.org/10.1126/science.1128908 CrossRefPubMedGoogle Scholar
  6. 6.
    Atlas B (1993) In Galaziya GI (ed.). Roskartografiya, Moscow (in Russian)Google Scholar
  7. 7.
    Votincev KK (1961) Gidrohimiya ozera Baikal. AN SSSR, Moscow (in Russian)Google Scholar
  8. 8.
    Weiss RF, Carmack EC, Koropalov VM (1991) Deep-water renewal and biological production in Lake Baikal. Nature 349:665–669.  https://doi.org/10.1038/349665a0 CrossRefGoogle Scholar
  9. 9.
    Grachev MA (2001) About the current condition of the ecological system of Lake Baikal (O sovremennom sostoyanii ekologicheskoy sistemy ozera Baikal). SO RAN, Novosibirsk (in Russian)Google Scholar
  10. 10.
    Granin NG, Makarov MM, Kucher KM, Gnatovsky RY (2010) Gas seeps in Lake Baikal-detection, distribution, and implications for water column mixing. Geo-Mar Lett 30:399–409.  https://doi.org/10.1007/s00367-010-0201-3 CrossRefGoogle Scholar
  11. 11.
    Khlystov O, De Batist M, Shoji H, Hachikubo A, Nishio S, Naudts L, Poort J, Khabuev A, Belousov O, Manakov A, Kalmychkov G (2013) Gas hydrate of Lake Baikal: discovery and varieties. J Asian Earth Sci 62:162–166.  https://doi.org/10.1016/j.jseaes.2012.03.009 CrossRefGoogle Scholar
  12. 12.
    Schmid M, MDe B, Granin NG, Kapitanov VA, McGinnis DF, Mizandrontsev IB, Obzhirov AI, Wiiest A (2007) Sources and sinks of methane in Lake Baikal: a synthesis of measurements and modeling. Limnol Oceanogr 52:1824–1837.  https://doi.org/10.4319/lo.2007.52.5.1824 CrossRefGoogle Scholar
  13. 13.
    Pestunov DA, Domysheva VM, Ivanov VG, Shamrin AM, Panchenko MV (2015) Spatial distribution of CO2 and CH4 fluxes directions over water surface of Lake Baikal (round-Baikal expedition, June, 2013). Atmos Oceanic Opt 28(9):792–799.  https://doi.org/10.15372/AOO20150904 (in Russian) CrossRefGoogle Scholar
  14. 14.
    Granin NG, Mizandrontsev IB, Obzhirov AI, Vereshchagina OF, Gnatovskii RY, Zhdanov AA (2013) Oxidation of methane in the water column of Lake Baikal. Dokl Earth Sci 451:784–786.  https://doi.org/10.1134/S1028334X13070258 CrossRefGoogle Scholar
  15. 15.
    Zakharenko AS, Pimenov NV, Ivanov VG, Zemskaya TI (2015) Detection of methane in the water column at gas and oil seep sites in central and southern Lake Baikal. Microbiology 84:90–97.  https://doi.org/10.1134/S0026261715010178 CrossRefGoogle Scholar
  16. 16.
    Granin NG, Vereshchagina OF, Kozlov VV, Obzhirov AI, Makarov MM, Gnatovsky RY, Ivanov VG, Blinov VV, Mizandrontsev IB (2014) Changes in the concentration of methane in Lake Baikal: a possible cause. Changing methane concentrations in Lake Baikal: possible cause, in Ross. Konf. “Gazovye gidraty v ekosisteme Zemli” (Russ. Conf. “Gas Hydrates in Earth Ecosystem”), Inst. Inorg. Chem., Sib. Barnch, Russ. Acad. Sci., Novosibirsk, p 25 (in Russian)Google Scholar
  17. 17.
    Khlystov OM, Gorshkov AG, Egorov AV, Zemskaya TI, Granin NG, Kalmychkov GV, Vorob'eva SS, Pavlova ON, Yakup MA, Makarov MM, Moskvin VI, Grachev MA (2007) Oil in the lake of world heritage. Dokl Earth Sci 415:682–685.  https://doi.org/10.1134/S1028334X07050042 CrossRefGoogle Scholar
  18. 18.
    Khlystov OM, Nishio S, Manakov AY, Sugiyama H, Khabuev AV, Belousov OV, Grachev MA (2014) The experience of mapping of Baikal subsurface gas hydrates and gas recovery. Russ Geol Geophys 55:1122–1129.  https://doi.org/10.1016/j.rgg.2014.08.007 CrossRefGoogle Scholar
  19. 19.
    Borowski WS (2004) A review of methane and gas hydrates in the dynamic, stratified system of the Blake ridge region, offshore southeastern North America. Chem Geol 205:311–346.  https://doi.org/10.1016/j.chemgeo.2003.12.022 CrossRefGoogle Scholar
  20. 20.
    Zakharova YR, Kurilkina MI, Likhoshvay AV, Shishlyannikov SM, Kalyuzhnaya OV, Petrova DP, Likhoshway EV (2013) Effect of bacteria from the bottom water layer of lake Baikal on degradation of diatoms. Paleontol J 47:1030–1034.  https://doi.org/10.1134/S0031030113090256 CrossRefGoogle Scholar
  21. 21.
    Mikhailov IS, Zakharova YR, Galachyants YP, Usoltseva MV, Petrova DP, Sakirko MV, Likhoshway YV, Grachev MA (2015) Similarity of structure of taxonomic bacterial communities in the photic layer of Lake Baikal’s three basins differing in spring phytoplankton composition and abundance. Dokl Biochem Biophys 465:413–419.  https://doi.org/10.1134/s1607672915060198 CrossRefPubMedGoogle Scholar
  22. 22.
    Kurilkina MI, Zakharova YR, Galachyants YP, Petrova DP, Bukin YS, Domysheva VM, Blinov VV, Likhoshway YV (2016) Bacterial community composition in the water column of the deepest freshwater Lake Baikal as determined by next-generation sequencing. FEMS Microbiol Ecol 92:fiw094.  https://doi.org/10.1093/femsec/fiw094 CrossRefPubMedGoogle Scholar
  23. 23.
    Rudd JWM, Taylor CD (1980) Methane cycling in aquatic environments. Adv Aquat Microbiol 2:77–150Google Scholar
  24. 24.
    Frenzel P, Thebrath B, Conrad R (1990) Oxidation of methane in the oxic surface-layer of a deep lake sediment (Lake Constance). FEMS Microbiol Ecol 73:149–158.  https://doi.org/10.1016/0378-1097(90)90661-9 CrossRefGoogle Scholar
  25. 25.
    Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531.  https://doi.org/10.1111/j.1574-6976.2010.00212.x CrossRefPubMedGoogle Scholar
  26. 26.
    Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PL, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882.  https://doi.org/10.1038/nature06411 CrossRefPubMedGoogle Scholar
  27. 27.
    Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, Op den Camp HJ (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878.  https://doi.org/10.1038/nature06222 CrossRefPubMedGoogle Scholar
  28. 28.
    Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci 105:300–304.  https://doi.org/10.1073/pnas.0704162105 CrossRefPubMedGoogle Scholar
  29. 29.
    Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471PubMedPubMedCentralGoogle Scholar
  30. 30.
    Trotsenko YA, Murrell JC (2008) Metabolic aspect of aerobic obligate methanotrophy. Adv Microbiol 63:183–229.  https://doi.org/10.1016/S0065-2164(07)00005-6 CrossRefGoogle Scholar
  31. 31.
    Dumont MG, Murrell JC (2005) Community-level analysis: key genes of aerobic methane oxidation. Methods Enzymol 397:413–427.  https://doi.org/10.1016/S0076-6879(05)97025-0 CrossRefPubMedGoogle Scholar
  32. 32.
    Costello AM, Lidstrom ME (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074PubMedPubMedCentralGoogle Scholar
  33. 33.
    De Batist M, Canals M, Sherstyankin P, Alekseev S and the INTAS Project 99-1669 Team (2002) A new bathymetric map of Lake Baikal. http://www.lin.irk.ru/intas/batimetria.pdf. Accessed 3 Feb 2018
  34. 34.
    Bol'shakov AM, Egorov AV (1987) Application of phase equilibrium degassing in gasometric research. Okeanologiya 27:861–862Google Scholar
  35. 35.
    Sambrook J, Frisch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, N.YGoogle Scholar
  36. 36.
    Sahm K, John P, Nacke H, Wemheuer B, Grote R, Daniel R, Antranikian G (2013) High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles 17:649–662.  https://doi.org/10.1007/s00792-013-0548-2 CrossRefPubMedGoogle Scholar
  37. 37.
    Holmes AJ, Costello A, Lidstrom ME, Murrell J (1995) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208.  https://doi.org/10.1111/j.1574-6968.1995.tb07834.x CrossRefPubMedGoogle Scholar
  38. 38.
    Neufeld JD, Schäfer H, Cox MJ, Boden R, McDonald IR, Murrell JC (2007) Stable-isotope probing implicates Methylophaga spp. and novel Gammaproteobacteria in marine methanol and methylamine metabolism. ISME J 1:480–491.  https://doi.org/10.1038/ismej.2007.65 CrossRefPubMedGoogle Scholar
  39. 39.
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120.  https://doi.org/10.1128/AEM.01043-13 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJV, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541.  https://doi.org/10.1128/aem.01541-09 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dumont MG, Lüke C, Deng Y, Frenzel P (2014) Classification of pmoA amplicon pyrosequences using BLAST and the lowest common ancestor method in MEGAN. Front Microbiol 5:34.  https://doi.org/10.3389/fmicb.2014.00034 CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  43. 43.
    Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152.  https://doi.org/10.1093/bioinformatics/bts565 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Team RC (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org. Accessed 16 Dec 2017
  45. 45.
    Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH (2007) The vegan package. Community Ecology Package 10:631–637Google Scholar
  46. 46.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402.  https://doi.org/10.1093/nar/25.17.3389 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425.  https://doi.org/10.1093/oxfordjournals.molbev.a040454 CrossRefPubMedGoogle Scholar
  48. 48.
    Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120.  https://doi.org/10.1007/BF01731581 CrossRefPubMedGoogle Scholar
  49. 49.
    Zuckerkandl E, Pauling L (1965) Evolving Genes and Proteins. In: Bryson V, Vogel HJ (eds) Evolutionary divergence and convergence in proteins. Academic Press, New York, pp 97–166Google Scholar
  50. 50.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  51. 51.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791.  https://doi.org/10.1111/j.1558-5646.1985.tb00420.x CrossRefPubMedGoogle Scholar
  52. 52.
    Belykh OI, Sorokovikova EG (2003) Autotrophic picoplankton in Lake Baikal: abundance, dynamics, and distribution. Aquat Ecosyst Health Manag 6:251–261.  https://doi.org/10.1080/14634980301489 CrossRefGoogle Scholar
  53. 53.
    Belykh OI, Sorokovikova EG, Saphonova TA, Tikhonova IV (2006) Autotrophic picoplankton of Lake Baikal: composition, abundance and structure. Hydrobiologia 568:9–17.  https://doi.org/10.1007/s10750-006-0340-8 CrossRefGoogle Scholar
  54. 54.
    Belykh OI, Tikhonova IV, Sorokovlkova EG, Sherbakova TA, Kureishevich AV (2011) Picoplankton Cyanoprokaryota of genera Synechococcus Nageli and Cyanobium Rippka et Cohen-baz. From Lake Baikal. Int J Algae 13:149–163  https://doi.org/10.1615/interjalgae.v13.i2.50 CrossRefGoogle Scholar
  55. 55.
    Kaluzhnaya OV, Itskovich VB (2015) Bleaching of Baikalian sponge affects the taxonomic composition of symbiotic microorganisms. Russ J Genet 51:1153–1157.  https://doi.org/10.1134/S1022795415110071 CrossRefGoogle Scholar
  56. 56.
    Zemskaya TI, Lomakina AV, Mamaeva EV, Zakharenko AS, Pogodaeva TV, Petrova DP, Galachyants YP (2015) Bacterial communities in sediments of Lake Baikal from areas with oil and gas discharge. Aquat Microb Ecol 76:95–109.  https://doi.org/10.3354/ame01773 CrossRefGoogle Scholar
  57. 57.
    Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315PubMedPubMedCentralGoogle Scholar
  58. 58.
    Haggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 103:29–72.  https://doi.org/10.1111/j.1574-6968.1992.tb05823.x CrossRefGoogle Scholar
  59. 59.
    Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, Williams KH, Tringe SG, Banfield JF (2013) Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1:22.  https://doi.org/10.1186/2049-2618-1-22 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Cardman Z, Arnosti C, Durbin A, Ziervogel K, Cox C, Steen AD, Teske A (2014) Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an arctic fjord of Svalbard. Appl Environ Microbiol 80:3749–3756.  https://doi.org/10.1128/AEM.00899-14 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zhang J, Zhang X, Liu Y, Xie SG, Liu YG (2014) Bacterioplankton communities in a high-altitude freshwater wetland. Ann Microbiol 64:1405–1411.  https://doi.org/10.1007/s13213-013-0785-8 CrossRefGoogle Scholar
  62. 62.
    Shimaraev MN, Parfenova VV, TYa K, Domysheva VM, Gnatovskii RY, Tsekhanovskiĭ VV, Logacheva NF, Levin (2000) Exchange processes and distribution of microorganisms in the deep water zone of Lake Baikal. Dokl Akad Nauk 372:138–141 (in Russian)Google Scholar
  63. 63.
    Parfenova VV, Shimaraev MN, TYa K, Domysheva VM, Levin LA, Dryukker VV, Zhdanov AA, Gnatovskii RY, Tsekhanovskiĭ VV, Logacheva NF (2000) On the vertical distribution of microorganisms in Lake Baikal during spring deep-water renewal. Microbiology 69:357–363.  https://doi.org/10.1007/BF02756748 CrossRefGoogle Scholar
  64. 64.
    Dumont MG (2014) Primers: functional marker genes for Methylotrophs and Methanotrophs. In: McGenity T, Timmis K, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Springer Protocols Handbooks. Springer, Berlin, pp 57–77  https://doi.org/10.1007/8623_2014_23 Google Scholar
  65. 65.
    McDonald IR, Murrell JC (1997) The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63(8):3218–3224PubMedPubMedCentralGoogle Scholar
  66. 66.
    Lau E, Fisher MC, Steudler PA, Colleen M (2013) The methanol dehydrogenase gene, mxaF, as a functional and phylogenetic marker for Proteobacterial Methanotrophs in natural environments. PLoS One 8:e56993.  https://doi.org/10.1371/journal.pone.0056993 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Giovannoni SJ, Hayakawa DH, Tripp HJ, Stingl U, Givan SA, Cho JC, Oh HM, Kitner JB, Vergin KL, Rappé MS (2008) The small genome of an abundant coastal ocean methylotroph. Environ Microbiol 10:1771–1782.  https://doi.org/10.1111/j.1462-2920.2008.01598.x CrossRefPubMedGoogle Scholar
  68. 68.
    Kalyuhznaya MG, Martens-Habbena W, Wang T, Hackett M, Stolyar SM, Stahl DA, Lidstrom ME, Chistoserdova L (2009) Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. Environ Microbiol Rep 1:385–392.  https://doi.org/10.1111/j.1758-2229.2009.00046.x CrossRefPubMedGoogle Scholar
  69. 69.
    Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater Lake Bacteria. Microbiol Mol Biol Rev 75:14–49.  https://doi.org/10.1128/mmbr.00028-10 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Nagata T, Takai K, Kawanobe K, Kim D-S, Nakazato R, Guselnikova N, Bondarenko N, Mologawaya O, Kostornova T, Drucker V, Ya S, Ya W (1994) Autotrophic picoplankton in southern Lake Baikal: abundance, growth and grazing mortality during summer. J Plankton Res 16:945–959.  https://doi.org/10.1093/plankt/16.8.945 CrossRefGoogle Scholar
  71. 71.
    Votintsev KK, Meshcheryakova AI, Popovskaya GI (1975) Cycle of organic matter in Lake Baikal. Nauka, Novosibirsk (in Russian)Google Scholar
  72. 72.
    Cabello-Yeves PJ, Zemskaya TI, Rosselli R, Coutinho FH, Zakharenko AS, Blinov VV, Rodriguez-Valera F (2018) Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Appl Environ Microbiol 84:e02132–e02117.  https://doi.org/10.1128/AEM.02132-17 CrossRefPubMedGoogle Scholar
  73. 73.
    Lindstrom ES, Kamst-Van Agterveld MP, Zwart G (2005) Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol 71:8201–8206.  https://doi.org/10.1128/aem.71.12.8201-8206.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Debroas D, Humbert JF, Enualt F, Bronner G, Faubladier M, Cornillot E (2009) Metagenomic approach studying the taxonomic and functional diversity of the bacterial community in a mesotrophic lake (lac du Bourget, France). Environ Microbiol 11:2412–2424.  https://doi.org/10.1111/j.1462-2920.2009.01969.x CrossRefPubMedGoogle Scholar
  75. 75.
    Zhuang WQ, Tay JH, Maszenan AM, Tay ST (2003) Isolation of naphthalene-degrading bacteria from tropical marine sediments. Water Sci Technol 47:303–308CrossRefGoogle Scholar
  76. 76.
    Liu Y, Zhang J, Zhang Z (2004) Isolation and characterization of polycyclic aromatic hydrocarbons-degrading Sphingomonas sp. strain ZL5. Biodegradation 15:205–212.  https://doi.org/10.1023/B:BIOD.0000026579.38741.e1 CrossRefPubMedGoogle Scholar
  77. 77.
    Chaudhary DK, Kim J (2016) Sphingomonas naphtha sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 66:4621–4627.  https://doi.org/10.1099/ijsem.0.001400 CrossRefPubMedGoogle Scholar
  78. 78.
    Zhou L, Li H, Zhang Y, Han S, Xua H (2016) Sphingomonas from petroleum-contaminated soils in Shenfu, China and their PAHs degradation abilities. Braz J Microbiol 47:271–278.  https://doi.org/10.1016/j.bjm.2016.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Gorshkov AG, Marinaite II, Zemskaya TI, Khodzher TV (2010) The present level of oil products in the water of Lake Baikal and its tributaries. Khimiya v Interesakh Ustoichivogo Razvitiya 18:711–718 (in Russian)Google Scholar
  80. 80.
    Tsutsumi M, Iwata T, Kojima H, Fukui M (2011) Spatiotemporal variations in an assemblage of closely related planktonic aerobic methanotrophs. Freshw Biol 56:342–351.  https://doi.org/10.1111/j.1365-2427.2010.02502.x CrossRefGoogle Scholar
  81. 81.
    Biderre-Petit C, Jézéquel D, Dugat-Bony E, Lopes F, Kuever J, Borrel G, Viollier E, Fonty G, Peyret P (2011) Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake. FEMS Microbiol Ecol 77:533–545.  https://doi.org/10.1111/j.1574-6941.2011.01134.x CrossRefPubMedGoogle Scholar
  82. 82.
    Blees J, Niemann H, Wenk CB, Zopfi J, Schubert CJ, Kirf MK, Veronesi ML, Hitz C, Lehmann MF (2014) Micro-aerobic bacterial methane oxidation in the chemocline and anoxic water column of deep south-alpine Lake Lugano (Switzerland). Limnol Oceanogr 59:311–324.  https://doi.org/10.4319/lo.2014.59.2.0311 CrossRefGoogle Scholar
  83. 83.
    Morana C, Borges AV, Roland FAE, Darchambeau F, Descy J-P, Bouillon S (2015) Methanotrophy within the water column of a large meromictic tropical Lake (lake Kivu, East Africa). Biogeosciences 12:2077–2088.  https://doi.org/10.5194/bgd-11-15663-2014 CrossRefGoogle Scholar
  84. 84.
    Bornemann M, Bussmann I, Tichy L, Deutzmann J, Schink B, Pester M (2016) Methane release from sediment seeps to the atmosphere is counteracted by highly active Methylococcaceae in the water column of deep oligotrophic Lake Constance. FEMS Microbiol Ecol 92:fiw123.  https://doi.org/10.1093/femsec/fiw123 CrossRefPubMedGoogle Scholar
  85. 85.
    He R, Wooller MJ, Pohlman JW, Quensen J, Tiedje JM, Leigh MB (2012) Shifts in identity and activity of Methanotrophs in Arctic Lake sediments in response to temperature changes. Appl Environ Microbiol 78:4715–4723.  https://doi.org/10.1128/AEM.00853-12 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Amaral JA, Knowles R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett 126:215–220.  https://doi.org/10.1111/j.1574-6968.1995.tb07421.x CrossRefGoogle Scholar
  87. 87.
    Henckel T, Roslev P, Conrad R (2000) Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ Microbiol 2:666–679.  https://doi.org/10.1046/j.1462-2920.2000.00149.x CrossRefPubMedGoogle Scholar
  88. 88.
    Osudar R, Liebner S, Alawi M, Yang S, Bussmann I, Wagner D (2016) Methane turnover and methanotrophic communities in arctic aquatic ecosystems of the Lena Delta, Northeast Siberia. FEMS Microbiol Ecol 92:fiw116.  https://doi.org/10.1093/femsec/fiw116 CrossRefPubMedGoogle Scholar
  89. 89.
    Milucka J, Kirf M, Lu L, Krupke A, Lam P, Littmann S, Kuypers MMM, Schubert CJ (2015) Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J 9:1991–2002.  https://doi.org/10.1038/ismej.2015.12 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Oswald K, Jegge C, Tischer J, Berg J, Brand A, Miracle MR, Soria X, Vicente E, Lehmann MF, Zopfi J, Schubert CJ (2016) Methanotrophy under versatile conditions in the water column of the ferruginous meromictic Lake La Cruz (Spain). Front Microbiol 7:1762.  https://doi.org/10.3389/fmicb.2016.01762 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Oswald K, Milucka J, Brand A, Hach P, Littmann S, Wehrli B, Kuypers MMM, Schubert CJ (2016) Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol Oceanogr 61:S101–S118.  https://doi.org/10.1002/lno.10312 CrossRefGoogle Scholar
  92. 92.
    Samad MS, Bertilsson S (2017) Seasonal variation in abundance and diversity of bacterial methanotrophs in five temperate lakes. Front Microbiol 8:142.  https://doi.org/10.3389/fmicb.2017.00142 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. Nov., sp. nov., a new methane oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969.  https://doi.org/10.1099/ijs.0.02805-0 CrossRefPubMedGoogle Scholar
  94. 94.
    Dedysh SN (2009) Exploring methanotroph diversity in acidic northern wetlands: molecular and cultivation-based studies. Microbiology 78:655–669.  https://doi.org/10.1134/s0026261709060010 CrossRefGoogle Scholar
  95. 95.
    Kip N, Dutilh BE, Pan Y, Bodrossy L, Neveling K, Kwint MP, Jetten MSM, Op den Camp HJM (2011) Ultra-deep pyrosequencing of pmoA amplicons confirms the prevalence of Methylomonas and Methylocystis in Sphagnum mosses from a Dutch peat bog. Environ Microbiol Rep 3:667–673.  https://doi.org/10.1111/j.1758-2229.2011.00260.x CrossRefPubMedGoogle Scholar
  96. 96.
    Chen Y, Dumont MG, Neufeld JD, Bodrossy L, Stralis-Pavese N, McNamara NP, Ostle N, Briones MJI, Murrell JC (2008) Revealing the uncultivated majority: combining DNA stable-isotope probing, multiple displacement amplification and metagenomic analyses of uncultivated Methylocystis in acidic peatlands. Environ Microbiol 10:2609–2622.  https://doi.org/10.1111/j.1462-2920.2008.01683.x CrossRefPubMedGoogle Scholar
  97. 97.
    Liebner S, Wagner D (2007) Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta, Siberia. Environ Microbiol 9:107–117.  https://doi.org/10.1111/j.1462-2920.2006.01120.x CrossRefPubMedGoogle Scholar
  98. 98.
    Liebner S, Rublack K, Stuehrmann T, Wagner D (2009) Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. Microb Ecol 57:25–35.  https://doi.org/10.1007/s00248-008-9411-x CrossRefPubMedGoogle Scholar
  99. 99.
    Börjesson G, Sundh I, Svensson B (2004) Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiol Ecol 48:305–312.  https://doi.org/10.1016/s0168-6496(04)00059-5 CrossRefPubMedGoogle Scholar
  100. 100.
    Mohanty SR, Bodelier PLE, Conrad R (2007) Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol Ecol 62:24–31.  https://doi.org/10.1111/j.1574-6941.2007.00370.x CrossRefPubMedGoogle Scholar
  101. 101.
    Oshkin IY, Wegner CE, Lüke C, Glagolev MV, Filippov IV, Pimenov NV, Liesack W, Dedysh SN (2014) Gammaproteobacterial methanotrophs dominate cold methane seeps in floodplains of west Siberian rivers. Appl Environ Microbiol 80:5944–5954.  https://doi.org/10.1128/aem.01539-14 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Crevecoeur S, Vincent WF, Comte J, Matveev A, Lovejoy C (2017) Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds. PLoS One 12:e0188223.  https://doi.org/10.1371/journal.pone.0188223 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs K-J, Stunnenberg HG, Jetten MSM, Op den Camp HJM (2011) Autotrophic Methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 193:4438–4446.  https://doi.org/10.1128/jb.00407-11 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Chistoserdova L (2011) Methylotrophy in a lake: from metagenomics to single organism physiology. Appl Environ Microbiol 77:4705–4711.  https://doi.org/10.1128/aem.00314-11 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Salcher MM, Neuenschwander SM, Posch T, Pernthaler J (2015) The ecology of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and isolation campaign. ISME J 9:2442–2453.  https://doi.org/10.1038/ismej.2015.55 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Chistoserdova L (2011) Modularity of methylotrophy, revisited. Environ Microbiol 13:2603–2622.  https://doi.org/10.1111/j.1462-2920.2011.02464.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Aleksandra S. Zakharenko
    • 1
  • Yuriy P. Galachyants
    • 1
  • Igor V. Morozov
    • 2
    • 3
  • Olga V. Shubenkova
    • 1
  • Alexey A. Morozov
    • 1
  • Vyacheslav G. Ivanov
    • 1
  • Nikolay V. Pimenov
    • 4
  • Andrey Y. Krasnopeev
    • 1
  • Tamara I. Zemskaya
    • 1
  1. 1.Siberian Branch of the Russian Academy of SciencesLimnological InstituteIrkutskRussia
  2. 2.Siberian Branch of the Russian Academy of SciencesInstitute of Chemical Biology and Fundamental MedicineNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Research Center of Biotechnology, Russian Academy of SciencesWinogradsky Institute of MicrobiologyMoscowRussia

Personalised recommendations