Abstract
The role of dispersal in the assembly of microbial communities remains contentious. This study tested the importance of dispersal limitation for the structuring of local soil bacterial communities using an experimental approach of propagule addition. Microbes extracted from soil pooled from samples collected at 20 localities across ~ 400 km in a temperate steppe were added to microcosms of local soils at three sites; the microcosms were then incubated in situ for 3 months. We then assessed the composition and diversity of bacterial taxa in the soils using 16S rRNA gene amplicon sequencing. The addition of the regional microbial pool did not cause significant changes in the overall composition or diversity of the total bacterial community, although a very small number of individual taxa may have been affected by the addition treatment. Our results suggest a negligible role of dispersal limitation in structuring soil bacterial communities in our study area.
This is a preview of subscription content, access via your institution.

References
Ricklefs RE, Schluter D (1993) Species diversity: regional and historical influences. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities. University of Chicago Press, Chicago, pp 350–363
Vellend M (2010) Conceptual synthesis in community ecology. Q. Rev. Biol. 85:183–206. https://doi.org/10.1086/652373
Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171. https://doi.org/10.1126/science.235.4785.167
Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063. https://doi.org/10.1126/science.1070710
Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. BioScience 54:777–784. https://doi.org/10.1641/0006-3568(2004)054[0777:TUOSSP]2.0.CO;2
de Wit R, Bouvier T (2006) ‘Everything is everywhere, but, the environment selects’; what did baas Becking and Beijerinck really say? Environ. Microbiol. 8:755–758. https://doi.org/10.1111/j.1462-2920.2006.01017.x
O’Malley MA (2008) ‘Everything is everywhere: but the environment selects’: ubiquitous distribution and ecological determinism in microbial biogeography. Stud Hist Phil Biol Biomed Sci 39:314–325. https://doi.org/10.1016/j.shpsc.2008.06.005
Nemergut DR, Schmidt SK, Fukami T, O'Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P, Ferrenberg S (2013) Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77:342–356. https://doi.org/10.1128/mmbr.00051-12
Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506. https://doi.org/10.1038/nrmicro2795
Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Øvreås L, Reysenbach A-L, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112. https://doi.org/10.1038/nrmicro1341
Papke RT, Ramsing NB, Bateson MM, Ward DM (2003) Geographical isolation in hot spring cyanobacteria. Environ. Microbiol. 5:650–659. https://doi.org/10.1046/j.1462-2920.2003.00460.x
Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978. https://doi.org/10.1126/science.1086909
Yannarell AC, Triplett EW (2005) Geographic and environmental sources of variation in lake bacterial community composition. Appl. Environ. Microbiol. 71:227–239. https://doi.org/10.1128/aem.71.1.227-239.2005
Green JL, Holmes AJ, Westoby M, Oliver I, Briscoe D, Dangerfield M, Gillings M, Beattie AJ (2004) Spatial scaling of microbial eukaryote diversity. Nature 432:747–750. https://doi.org/10.1038/nature03034
Reche I, Pulido-Villena E, Morales-Baquero R, Casamayor EO (2005) Does ecosystem size determine aquatic bacterial richness? Ecology 86:1715–1722. https://doi.org/10.1890/04-1587
Caruso T, Chan Y, Lacap DC, Lau MCY, McKay CP, Pointing SB (2011) Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J 5:1406–1413. https://doi.org/10.1038/ismej.2011.21
Ge Y, He J-z, Zhu Y-G, Zhang J-B, Xu Z, Zhang L-M, Zheng Y-M (2008) Differences in soil bacterial diversity: driven by contemporary disturbances or historical contingencies? ISME J 2:254–264. https://doi.org/10.1038/ismej.2008.2
Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM (2004) A taxa–area relationship for bacteria. Nature 432:750–753. https://doi.org/10.1038/nature03073
Vos M, Velicer GJ (2008) Isolation by distance in the spore-forming soil bacterium Myxococcus xanthus. Curr. Biol. 18:386–391. https://doi.org/10.1016/j.cub.2008.02.050
Telford RJ, Vandvik V, Birks HJB (2006) Dispersal limitations matter for microbial morphospecies. Science 312:1015. https://doi.org/10.1126/science.1125669
van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S, Jeppesen E, Conde-Porcuna J-M, Schwenk K, Zwart G, Degans H, Vyverman W, De Meester L (2007) The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proc. Natl. Acad. Sci. U. S. A. 104:20404–20409. https://doi.org/10.1073/pnas.0707200104
Ptacnik R, Andersen T, Brettum P, Lepistö L, Willén E (2010) Regional species pools control community saturation in lake phytoplankton. Proc. R. Soc. B 277:3755–3764. https://doi.org/10.1098/rspb.2010.1158
Ryšánek D, Hrčková K, Škaloud P (2015) Global ubiquity and local endemism of free-living terrestrial protists: phylogeographic assessment of the streptophyte alga Klebsormidium. Environ. Microbiol. 17:689–698. https://doi.org/10.1111/1462-2920.12501
Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 366:2351–2363. https://doi.org/10.1098/rstb.2011.0063
Hao Y-Q, Zhao X-F, Zhang D-Y (2016) Field experimental evidence that stochastic processes predominate in the initial assembly of bacterial communities. Environ. Microbiol. 18:1730–1739. https://doi.org/10.1111/1462-2920.12858
Comte J, Lindström ES, Eiler A, Langenheder S (2014) Can marine bacteria be recruited from freshwater sources and the air? ISME J 8:2423–2430. https://doi.org/10.1038/ismej.2014.89
Langenheder S, Székely AJ (2011) Species sorting and neutral processes are both important during the initial assembly of bacterial communities. ISME J 5:1086–1094. https://doi.org/10.1038/ismej.2010.207
Bell T (2010) Experimental tests of the bacterial distance–decay relationship. ISME J 4:1357–1365. https://doi.org/10.1038/ismej.2010.77
Myers JA, Harms KE (2009) Seed arrival, ecological filters, and plant species richness: a meta-analysis. Ecol. Lett. 12:1250–1260. https://doi.org/10.1111/j.1461-0248.2009.01373.x
Spalding VM (1909) Distribution and movement of desert plants. Carnegie Institute of Washington, Washington, DC
Cornell HV, Harrison SP (2014) What are species pools and when are they important? Annu. Rev. Ecol. Evol. Syst. 45:45–67. https://doi.org/10.1146/annurev-ecolsys-120213-091759
Foster BL, Tilman D (2003) Seed limitation and the regulation of community structure in oak savanna grassland. J. Ecol. 91:999–1007. https://doi.org/10.1046/j.1365-2745.2003.00830.x
Germain RM, Strauss SY, Gilbert B (2017) Experimental dispersal reveals characteristic scales of biodiversity in a natural landscape. Proc. Natl. Acad. Sci. U. S. A. 114:4447–4452. https://doi.org/10.1073/pnas.1615338114
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996–998. https://doi.org/10.1038/nmeth.2604
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41:D590–D596. https://doi.org/10.1093/nar/gks1219
Zhang F-G, Zhang Q-G (2015) Patterns in species persistence and biomass production in soil microcosms recovering from a disturbance reject a neutral hypothesis for bacterial community assembly. PLoS One 10:e0126962. https://doi.org/10.1371/journal.pone.0126962
Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Freitag T, Guillaumaud N, Roux XL (2006) Maintenance of soil functioning following erosion of microbial diversity. Environ. Microbiol. 8:2162–2169. https://doi.org/10.1111/j.1462-2920.2006.01098.x
van Elsas JD, Chiurazzi M, Mallon CA, Elhottovā D, Krištůfek V, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. U. S. A. 109:1159–1164. https://doi.org/10.1073/pnas.1109326109
Peter H, Beier S, Bertilsson S, Lindström ES, Langenheder S, Tranvik LJ (2011) Function-specific response to depletion of microbial diversity. ISME J 5:351–361. https://doi.org/10.1038/ismej.2010.119
Oksanen J, Blanchet FG, Kindt R, Legendre P, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: community ecology package. R package version 1.17–8
R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27:325–349. https://doi.org/10.2307/1942268
Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
Griffin DW (2007) Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev. 20:459–477. https://doi.org/10.1128/cmr.00039-06
Perfumo A, Marchant R (2010) Global transport of thermophilic bacteria in atmospheric dust. Environ. Microbiol. Rep. 2:333–339. https://doi.org/10.1111/j.1758-2229.2010.00143.x
Bowers RM, Sullivan AP, Costello EK, Collett JL, Knight R, Fierer N (2011) Sources of bacteria in outdoor air across cities in the midwestern United States. Appl. Environ. Microbiol. 77:6350–6356. https://doi.org/10.1128/aem.05498-11
Peter H, Hörtnagl P, Reche I, Sommaruga R (2014) Bacterial diversity and composition during rain events with and without Saharan dust influence reaching a high mountain lake in the Alps. Environ. Microbiol. Rep. 6:618–624. https://doi.org/10.1111/1758-2229.12175
Zhang H, Zhu SD, John R, Li RH, Liu H, Ye Q (2017) Habitat filtering and exclusion of weak competitors jointly explain fern species assemblage along a light and water gradient. Sci. Rep. 7:298. https://doi.org/10.1038/s41598-017-00429-9
Götzenberger L, de Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, Lepš J, Lindborg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M (2012) Ecological assembly rules in plant communities—approaches, patterns and prospects. Biol. Rev. 87:111–127. https://doi.org/10.1111/j.1469-185X.2011.00187.x
Chen IC, Hsieh C-h, Kondoh M, Lin H-J, Miki T, Nakamura M, Ohgushi T, Urabe J, Yoshida T (2017) Filling the gaps in ecological studies of socioecological systems. Ecol. Res. 32:873–885. https://doi.org/10.1007/s11284-017-1521-9
Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23. https://doi.org/10.1146/annurev-ecolsys-110411-160340
Cho J-C, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl. Environ. Microbiol. 66:5448–5456. https://doi.org/10.1128/aem.66.12.5448-5456.2000
Morriën E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, de Hollander M, Soto RL, Bouffaud M-L, Buée M, Dimmers W, Duyts H, Geisen S, Girlanda M, Griffiths RI, Jørgensen H-B, Jensen J, Plassart P, Redecker D, Schmelz RM, Schmidt O, Thomson BC, Tisserant E, Uroz S, Winding A, Bailey MJ, Bonkowski M, Faber JH, Martin F, Lemanceau P, de Boer W, van Veen JA, van der Putten WH (2017) Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8:14349. https://doi.org/10.1038/ncomms14349
Calderón K, Spor A, Breuil M-C, Bru D, Bizouard F, Violle C, Barnard RL, Philippot L (2017) Effectiveness of ecological rescue for altered soil microbial communities and functions. ISME J 11:272–283. https://doi.org/10.1038/ismej.2016.86
Vannette RL, Fukami T, Wootton T (2014) Historical contingency in species interactions: towards niche-based predictions. Ecol. Lett. 17:115–124. https://doi.org/10.1111/ele.12204
Hesse E, O'Brien S, Tromas N, Bayer F, Luján AM, van Veen EM, Hodgson DJ, Buckling A, Klironomos J (2018) Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol. Lett. 21:117–127. https://doi.org/10.1111/ele.12878
Funding
This study was funded by the National Natural Science Foundation of China (31700434, 31725006, and 31670376) and the 111 project (B13008). The 16S rRNA gene sequence data were deposited in the NCBI Sequence Read Archive under accession number SRP057046.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethical Approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Conflict of Interest
The authors declare that they have no conflicts of interest.
Rights and permissions
About this article
Cite this article
Zhang, FG., Bell, T. & Zhang, QG. Experimental Testing of Dispersal Limitation in Soil Bacterial Communities with a Propagule Addition Approach. Microb Ecol 77, 905–912 (2019). https://doi.org/10.1007/s00248-018-1284-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00248-018-1284-z
Keywords
- Soil bacteria
- Community assembly
- Microcosm
- Regional processes
- Seed addition