Arbuscular Mycorrhizal Fungi Alter the Community Structure of Ammonia Oxidizers at High Fertility via Competition for Soil NH4+

Abstract

Nitrification represents a central process in the cycling of nitrogen (N) which in high-fertility habitats can occasionally be undesirable. Here, we explore how arbuscular mycorrhiza (AM) impacts nitrification when N availability is not limiting to plant growth. We wanted to test which of the mechanisms that have been proposed in the literature best describes how AM influences nitrification. We manipulated the growth settings of Plantago lanceolata so that we could control the mycorrhizal state of our plants. AM induced no changes in the potential nitrification rates or the estimates of ammonium oxidizing (AO) bacteria. However, we could observe a moderate shift in the community of ammonia-oxidizers, which matched the shift we saw when comparing hyphosphere to rhizosphere soil samples and mirrored well changes in the availability of ammonium in soil. We interpret our results as support that it is competition for N that drives the interaction between AM and AO. Our experiment sheds light on an understudied interaction which is pertinent to typical management practices in agricultural systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Aanderud ZT, Bledsoe CS (2009) Preferences for 15N-ammonium, 15N-nitrate, and 15N-glycine differ among dominant exotic and subordinate native grasses from a California oak woodland. Environ Exp Bo 65:205–209

    Article  CAS  Google Scholar 

  2. 2.

    Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105(supp 1):11512–11519

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Amora-Lazcano E, Vázquez MM, Azcón R (1998) Response of nitrogentransforming microorganisms to arbuscular mycorrhizal fungi. Biol Fertil Soils 27:65e70

    Article  Google Scholar 

  4. 4.

    Avrahami S, Bohannan BJA (2007) Response of Nitrosospira sp strain AF-Like ammonia oxidizers to changes in temperature, soil moisture content, and fertilizer concentration. Appl Environ Microbiol 73:1166–1173

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Banning NC, Maccarone LD, Fis LM, Murphy DV (2015) Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil. Sci Rep 5:11146

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Bender SF, Plantenga F, Neftel A, Jocher M, Oberholzer HR, Kohl L, Giles M, Danniel TJ, van der Heijden MGA (2014) Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. ISME J 8:1336–1345

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Bohrerova Z, Stralkova R, Podesvova J, Bohrer G, Pokorny E (2004) The relationship between redox potential and nitrification under different sequences of crop rotations. Soil Tillage Res 77:25–33

    Article  Google Scholar 

  8. 8.

    Bollmann A, Bår-Gilissen M-J, Laanbroek HJ (2002) Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 68:4751–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu. Rev. Microbiol. 63:363–383

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Boudsocq S, Niboyet A, Lata JC, Reynaud X, Loeuille N, Mathieu J, Blouin M, Abbadie L, Barot S, Loeuille N, Mathieu J, Blouin M, Abbadie L, Barot S (2012) Plant preference for ammonium versus nitrate: a neglected determinant of ecosystem functioning? Am. Nat. 180:60–69

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Britto DT, Kronzucker HJ (2013) Ecological significance and complexity of N-source preference in plants. Ann. Bot. 112:957–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    BSI (1984) BS 6068–2 11, Water quality, physical, chemical and biochemical methods. Determination of ammonium, manual spectrometric method. British Standards Institute, London, p 10

  13. 13.

    Camenzind T, Rillig MC (2013) Extraradical arbuscular mycorrhizal fungal hyphae in an organic tropical montane forest soil. Soil Biol. Biochem. 64:96–102

    Article  CAS  Google Scholar 

  14. 14.

    Cavagnaro TR, Jackson LE, Scow KM, Hristova KR (2007) Effects of arbuscular mycorrhizas on ammonia oxidizing bacteria in an organic farm soil. Microb. Ecol. 54:618e626

    Article  CAS  Google Scholar 

  15. 15.

    Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MGA (2015) The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 20:283–290

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Chen YL, Chen BD, Hu YJ, Li T, Zhang X, Hao ZP (2013) Direct and indirect influence of arbuscular mycorrhizal fungi on abundance and community structure of ammonia oxidizing bacteria and archaea in soil microcosms. Pedobiologia 56:205–212

    Article  CAS  Google Scholar 

  17. 17.

    Cranfield DE, Glazer DE, Falkowski PG (2010) The evolution and future of earth’s nitrogen cycle. Science 330:192–196

    Article  CAS  Google Scholar 

  18. 18.

    de Boer W, Kowalchuk GA (2001) Nitrification in acid soils: microorganisms and mechanisms. Soil Biol Biocem 33:853–866

    Article  Google Scholar 

  19. 19.

    De Caceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574

    Article  PubMed  Google Scholar 

  20. 20.

    Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JS (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat. Geosci. 2:621–624

    Article  CAS  Google Scholar 

  21. 21.

    Dodds WK, Bouska WW, Eitzman JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ (2009) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ. Sci. Technol. 43:12–19

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Drummond A, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67:345–366

    Google Scholar 

  24. 24.

    Eviner VT, Chapin FSIII, Vaughn GE (2006) Seasonal variations in plant species effects on soil N and P dynamics. Ecology 87:974–986

    Article  PubMed  Google Scholar 

  25. 25.

    Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61:1–10

    Article  Google Scholar 

  26. 26.

    Faustino LI, Morettie AP, Graciano C (2015) Fertilization with urea, ammonium and nitrate produce different effects on growth, hydraulic traits and drought tolerance in Pinus taeda seedlings. Tree Physiol. 35:1062–1074

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Francis CA, Roberts KJ, Beman JM, Santoro A, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. U. S. A. 102:14683–14688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 37:112–129

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Hao X, Jiang R, Chen T (2011) Clustering 16S rRNA for OTU prediction: a method of unsupervised Bayesian clustering. Bioinformatics 27:611–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Harrison AK, Bol R, Bardgett RD (2007) Preferences for different nitrogen forms by coexisting plant species and soil microbes. Ecology 88:989–999

    Article  PubMed  Google Scholar 

  31. 31.

    Hu HW, Zhang LM, Dai Y, Di HJ, He JZ (2013) pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. J. Soils Sediments 13:1439–1449

    Article  CAS  Google Scholar 

  32. 32.

    IPCC (2014) In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate Change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–1454

    Google Scholar 

  33. 33.

    Johnson NC, Wilson GWT, Bowker MA, Wilson J, Miller RM (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc. Natl. Acad. Sci. U. S. A. 107:2093–2098

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Johnson NC, Wilson GWT, Wilson JA, Miller RM, Bowker MA (2015) Mycorrhizal phenotypes and the law of the minimum. New Phytol. 205:1473–1484

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Kohl L, van der Heijden MGA (2016) Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biol. Biochem. 94:191–199

    Article  CAS  Google Scholar 

  37. 37.

    Kyveryga PM, Blackmer AM, Ellsworth JW, Isla R (2004) Soil pH effects on nitrification of fall-applied anhydrous ammonia. Soil Sci Soc Am J 68:545–551

    Article  CAS  Google Scholar 

  38. 38.

    Lam SK, Suter H, Mosier AR, Chen D (2017) Using nitrification inhibitors to mitigate agricultural N2O emission: a double-edged sword? Glob. Chang. Biol. 23:485–489

    Article  PubMed  Google Scholar 

  39. 39.

    Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  PubMed  Google Scholar 

  40. 40.

    Legendre P, Oksanen J, ter Braak CJF (2011) Testing the significance of canonical axes in redundancy analysis. Methods Ecol Evol 2:269–277

    Article  Google Scholar 

  41. 41.

    Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation – a meta-analysis. Plant Soil 374:523–537

    Article  CAS  Google Scholar 

  42. 42.

    McNaughton SJ (1977) Diversity and stability of ecological communities - comment on role of empirism in ecology. Am. Nat. 111:515–525

    Article  Google Scholar 

  43. 43.

    Miranda MM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Muyzer H, de Waal EG, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Oksanen J (2015) Multivariate analysis of ecological communities in R: vegan tutorial. R Package Version 1:17–27

    Google Scholar 

  47. 47.

    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RBO, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Vegan: community ecology package. R Package Version 2:2–1

    Google Scholar 

  48. 48.

    Palmer MW, McGlinn DJ, Westerberg L, Milberg P (2008) Indices for determining differences in species composition: some simplifications of RDA and CCA. Ecology 89:1769–1771

    Article  PubMed  Google Scholar 

  49. 49.

    Prosser JI (2007) The ecology of nitrifying bacteria. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Amsterdam, pp 223–243

    Google Scholar 

  50. 50.

    Prosser JI (2011) Soil nitrifiers and nitrification. In: Ward B, Arp D, Klotz M (eds) Nitrification. ASM Press, Washington, DC

    Google Scholar 

  51. 51.

    Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 20:523–531

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Rillig MC, Field CB, Allen MF (1999) Soil biota responses to long-term atmospheric CO2 enrichment in two California annual grasslands. Oecologia 119:572–577

    Article  PubMed  Google Scholar 

  53. 53.

    Rillig MC, Wagner M, Salem M, Antunes PM, George C, Ramke H-G, Titirici M-M, Antonietti M (2010) Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza. Appl. Soil Ecol. 45:238–242

    Article  Google Scholar 

  54. 54.

    Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol. 205:1385–1388

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Rillig MC, Sosa-Hernandez MA, Roy J, Aguilar-Trigueros CA, Valyi K, Lehmann A (2016) Towards an integrated mycorrhizal technology: harnessing mycorrhizae for sustainable intensification in agriculture. Front Plant Sci 7:1625

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63:4704–4712

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Ruser R, Schulz R (2015) The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—a review. J. Plant Nutr. Soil Sci. 178:171–188

    Article  CAS  Google Scholar 

  58. 58.

    Schimel JP, Bennet J, Fierer N (2005) Microbial community compositionand soil nitrogen cycling: is there really a connection? Biological diversityand function in soils. In: Bardgett RD, Usher MB, Hopkins DW (eds). Cambridge University Press, Cambridge, pp 171–188

    Google Scholar 

  59. 59.

    Schlesinger WH (2009) On the fate of antrhopogenic nitrogen. Proc. Natl. Acad. Sci. U. S. A. 6:203–208

    Article  Google Scholar 

  60. 60.

    Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PlosOne 6:e27310

    Article  CAS  Google Scholar 

  61. 61.

    Siddiky MRK, Schaller J, Caruso T, Rillig MC (2012) Arbuscular mycorrhizal fungi and collembola non-additively increase soil aggregation. Soil Biol. Biochem. 47:93–99

    Article  CAS  Google Scholar 

  62. 62.

    Silvertown J (2004) Plant coexistence and the niche. Trends Ecol. Evol. 19:605–611

    Article  Google Scholar 

  63. 63.

    Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62:227–250

    Article  CAS  PubMed  Google Scholar 

  64. 64.

    Subbarao GV, Ito O, Sahrawat KL, Berry WL, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Eao IM (2007) Scope and strategies for regulation of nitrification in agricultural systems—challenges and opportunities. Critical Rev Plant Sci 25:303–335

    Article  CAS  Google Scholar 

  65. 65.

    Tanaka Y, Yano K (2006) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247e1254

    Google Scholar 

  66. 66.

    Thion CE, Poirel JD, Cornulier T, de Vries FT, Bardgett RD, Prosser JI, Laanbroek R (2016) Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance. FEMS Microbiol. Ecol. 92(7):fiw091

    Article  CAS  PubMed  Google Scholar 

  67. 67.

    van der Heijden MGA (2010) Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology 91:1163–1171

    Article  PubMed  Google Scholar 

  68. 68.

    van der Krift TAJ, Berendse F (2001) The effect of plant species on soil nitrogen mineralization. J. Ecol. 89:555–561

    Article  Google Scholar 

  69. 69.

    Venturi V, Keel C (2016) Signalling in the rhizosphere. Trends Plant Sci. 21:187–198

    Article  CAS  PubMed  Google Scholar 

  70. 70.

    Veresoglou SD, Rillig MC (2013) Accounting for the adaptation deficit of non-mycorrhizal plants in experiments. Plant Soil 366:33–34

    Article  CAS  Google Scholar 

  71. 71.

    Veresoglou SD (2012) Arbuscular mycorrhiza prevents suppression of actual nitrification rates in the (myco) rhizosphere of Plantago lanceolata. Pedosphere 22:137–151

    Article  Google Scholar 

  72. 72.

    Veresoglou SD, Sen R, Mamolos AP, Veresoglou DS (2011a) Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils. J. Ecol. 99:1339–1349

    Article  CAS  Google Scholar 

  73. 73.

    Veresoglou SD, Shaw LJ, Sen R (2011b) Glomus intraradices and Gigaspora margarita arbuscular mycorrhizal associations differentially affect nitrogen and potassium nutrition of Plantago lanceolata in a low fertility dune soil. Plant Soil 340:481–490

    Article  CAS  Google Scholar 

  74. 74.

    Veresoglou SD, Chen BD, Rillig MC (2012) Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol. Biochem. 46:53–62

    Article  CAS  Google Scholar 

  75. 75.

    Veresoglou SD, Powell JR, Davison J, Lekberg Y, Rillig MC (2014) The Leinster and Cobbold indices improve inferences of microbial diversity. Fungal Ecol. 11(1–7):1–7

    Article  Google Scholar 

  76. 76.

    Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl. Acad. Sci. U. S. A. 96:1463–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank James Prosser for giving us the cultures of the ammonia oxidizers which we used as positive controls and for providing invaluable comments on an earlier version of the manuscript, Jens Rolff for granting access to laboratory equipment and consumables and Stefan Hempel for technical support. The project was funded by the EU-framework FP7-People project: AMNitrification: “A mechanistic analysis of the impact of arbuscular mycorrhiza on ammonia oxidizing community dynamics and nitrification potential rates in N-limited soils” awarded to SDV (Grant agreement number 300298).

Author information

Affiliations

Authors

Contributions

Conceived the study, run and harvested the experiment and assayed biochemical parameters: SDV; shared the molecular work: SDV, EV and OM; extracted hyphae from soil: IM; did the statistical analysis and bioinformatics: SDV; SDV wrote the manuscript with the help of EV, RS and MCR and everybody provided comments.

Corresponding author

Correspondence to Stavros D. Veresoglou.

Electronic supplementary material

ESM 1

(DOC 268 kb)

ESM 2

(XLSX 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veresoglou, S.D., Verbruggen, E., Makarova, O. et al. Arbuscular Mycorrhizal Fungi Alter the Community Structure of Ammonia Oxidizers at High Fertility via Competition for Soil NH4+. Microb Ecol 78, 147–158 (2019). https://doi.org/10.1007/s00248-018-1281-2

Download citation

Keywords

  • Ammonium oxidizers
  • Arbuscular mycorrhiza
  • Glomeromycota
  • Mycorrhizal hyphosphere
  • Nitrification potential