Skip to main content

Advertisement

Log in

Variations in Gut Microbiota of Siberian Flying Squirrels Correspond to Seasonal Phenological Changes in Their Hokkaido Subarctic Forest Ecosystem

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Gut microbial communities of animals are influenced by diet and seasonal weather changes. Since foraging strategies of wild animals are affected by phenological changes, gut microbial communities would differ among seasons. However, interactions of plant-animal-microbiota with seasonal changes have not been well characterized. Here, we surveyed gut microbial diversity of Siberian flying squirrels (Pteromys volans orii) from a natural forest in Hokkaido during spring and summer of 2013 and 2014. Additionally, we compared microbial diversity to temperature changes and normalized difference vegetation index (NDVI). Changes in both seasonal temperature and phenology were significantly associated with alterations in gut microbiota. There were two clusters of OTUs, below and above 20 °C that were significantly correlated with low and high temperatures, respectively. Low-temperature cluster OTUs belonged to various phyla, whereas the high-temperature cluster was only constituted by Firmicutes. In conclusion, gut microbiota of Siberian flying squirrels varied with environmental changes on an ecological scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651. https://doi.org/10.1126/science.1155725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kostic AD, Howitt MR, Garrett WS (2013) Exploring host–microbiota interactions in animal models and humans. Genes Dev 27:701–718. https://doi.org/10.1101/gad.212522.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14. https://doi.org/10.1126/scitranslmed.3000322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563. https://doi.org/10.1038/nature12820

    Article  CAS  PubMed  Google Scholar 

  5. Moschen AR, Wieser V, Tilg H (2012) Dietary factors: major regulators of the gut’s microbiota. Gut Liver 6:411–416. https://doi.org/10.5009/gnl.2012.6.4.411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maurice CF, Knowles SC, Ladau J, Pollard KS, Fenton A, Pedersen AB, Turnbaugh PJ (2015) Marked seasonal variation in the wild mouse gut microbiota. ISME J 9:2423–2434. https://doi.org/10.1038/ismej.2015.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G, Knight R, Manjurano A, Changalucha J, Elias JE, Dominguez-Bello MG, Sonnenburg JL (2017) Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357:802–806. https://doi.org/10.1126/science.aan4834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kohl KD, Yahn J (2016) Effects of environmental temperature on the gut microbial communities of tadpoles. Environ Microbiol 18:1561–1565. https://doi.org/10.1111/1462-2920.13255

    Article  PubMed  Google Scholar 

  9. Kikuchi Y, Tada A, Musolin DL, Hari N, Hosokawa T, Fujisaki K, Fukatsu T (2016) Collapse of insect gut symbiosis under simulated climate change. MBio 7. https://doi.org/10.1128/mBio.01578-16

  10. Shoemaker KM, Moisander PH (2017) Seasonal variation in the copepod gut microbiome in the subtropical North Atlantic Ocean. Environ Microbiol 19:3087–3097. https://doi.org/10.1111/1462-2920.13780

    Article  CAS  PubMed  Google Scholar 

  11. Sun B, Wang X, Bernstein S, Huffman MA, Xia DP, Gu Z, Chen R, Sheeran LK, Wagner RS, Li J (2016) Marked variation between winter and spring gut microbiota in free-ranging Tibetan macaques (Macaca thibetana). Sci Rep 6:26035. https://doi.org/10.1038/srep26035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stone AI (2007) Responses of squirrel monkeys to seasonal changes in food availability in an eastern Amazonian forest. Am J Primatol 69:142–157. https://doi.org/10.1002/ajp.20335

    Article  PubMed  Google Scholar 

  13. Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, Wilson BA, Nelson KE, White BA, Garber PA (2015) The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb Ecol 69:434–443. https://doi.org/10.1007/s00248-014-0554-7

    Article  CAS  PubMed  Google Scholar 

  14. Amato KR, Ulanov A, Ju KS, Garber PA (2017) Metabolomic data suggest regulation of black howler monkey (Alouatta pigra) diet composition at the molecular level. Am J Primatol 79:1–10. https://doi.org/10.1002/ajp.22616

    Article  CAS  PubMed  Google Scholar 

  15. Siles JA, Margesin R (2017) Seasonal soil microbial responses are limited to changes in functionality at two Alpine forest sites differing in altitude and vegetation. Sci Rep 7:2204. https://doi.org/10.1038/s41598-017-02363-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Solden LM, Hoyt DW, Collins WB, Plank JE, Daly RA, Hildebrand E, Beavers TJ, Wolfe R, Nicora CD, Purvine SO, Carstensen M, Lipton MS, Spalinger DE, Firkins JL, Wolfe BA, Wrighton KC (2017) New roles in hemicellulosic sugar fermentation for the uncultivated Bacteroidetes family BS11. ISME J 11:691–703. https://doi.org/10.1038/ismej.2016.150

    Article  CAS  PubMed  Google Scholar 

  17. Stevenson TJ, Duddleston KN, Buck CL (2014) Effects of season and host physiological state on the diversity, density, and activity of the arctic ground squirrel cecal microbiota. Appl Environ Microbiol 80:5611–5622. https://doi.org/10.1128/AEM.01537-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuo C-C, Lee L-L (2003) Food availability and food habits of Indian giant flying squirrels (Petaurista Philippensis) in Taiwan. J Mammal 84:1330–1340. https://doi.org/10.1644/bos-039

    Article  Google Scholar 

  19. Okitsu S (2003) Forest vegetation of northern Japan and the southern Kurils. In: Kolbek J, Šrůtek M, Box EO (eds) Forest vegetation of Northeast Asia. Springer Netherlands, Dordrecht, pp 231–261

    Chapter  Google Scholar 

  20. Nagai S, Nakai T, Saitoh TM, Busey RC, Kobayashi H, Suzuki R, Muraoka H, Kim Y (2013) Seasonal changes in camera-based indices from an open canopy black spruce forest in Alaska, and comparison with indices from a closed canopy evergreen coniferous forest in Japan. Polar Sci 7:125–135. https://doi.org/10.1016/j.polar.2012.12.001

    Article  Google Scholar 

  21. Olenichenko NA, Zagoskina NV, Astakhova NV, Trunova TI, Kuznetsov YV (2008) Primary and secondary metabolism of winter wheat under cold hardening and treatment with antioxidants. Appl Biochem Microbiol 44:535–540. https://doi.org/10.1134/s0003683808050141

    Article  CAS  Google Scholar 

  22. Evans AL, Singh NJ, Friebe A, Arnemo JM, Laske TG, Frobert O, Swenson JE, Blanc S (2016) Drivers of hibernation in the brown bear. Front Zool 13:7. https://doi.org/10.1186/s12983-016-0140-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chevalier C, Stojanovic O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, Rigo D, Fabbiano S, Stevanovic A, Hagemann S, Montet X, Seimbille Y, Zamboni N, Hapfelmeier S, Trajkovski M (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell 163:1360–1374. https://doi.org/10.1016/j.cell.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  24. Zietak M, Kovatcheva-Datchary P, Markiewicz LH, Stahlman M, Kozak LP, Backhed F (2016) Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab 23:1216–1223. https://doi.org/10.1016/j.cmet.2016.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Derrien M, Vaughan EE, Plugge CM, de Vos WM (2004) Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54:1469–1476. https://doi.org/10.1099/ijs.0.02873-0

    Article  CAS  PubMed  Google Scholar 

  26. Japan Meteorological Agency. http://www.data.jma.go.jp/obd/stats/etrn/view/nml_amd_10d.php?prec_no=12&block_no=0021&year=&month=&day=&view=a2

  27. Kadoya N, Iguchi K, Matsui M, Okahira T, Kato A, Oshida T, Hayashi Y (2010) A preliminary survey on nest cavity use by Siberian flying squirrels, Pteromys volans orii, in forests of Hokkaido Island, Japan. Russian Journal of Theriology 9:27–32. https://doi.org/10.15298/rusjtheriol.9.1.04

    Article  Google Scholar 

  28. Izumi I, Matsui M, Okahira T, Hayashi Y, Oshida T (2011) Preliminary survey of habitat use by Sciurus vulgaris orientis in a natural forest of Hokkaido Island, Japan. Mamm Study 36:109–112. https://doi.org/10.3106/041.036.0202

    Article  Google Scholar 

  29. Yamamoto H, Nitami T, Kisanuki H (1995) Stand structure of mixed-species stands ( I ) Relation of species composition and topographic factors. J Jap Forest Soc 77:47–54. https://doi.org/10.11519/jjfs1953.77.1_47

    Article  Google Scholar 

  30. Abe H, Ishii N, Itoo T, Kaneko Y, Maeda K, Miura S, Yoneda M (2005) A guide to the mammals of Japan. Tokai University Press, Kanagawa

    Google Scholar 

  31. Hanski IK, Stevens PC, Ihalempiä P, Selonen V (2000) Home-range size, movements, and nest-site use in the Siberian flying squirrel, Pteromys Volans. J Mammal 81:798–809. https://doi.org/10.1644/1545-1542(2000)081<0798:Hrsman>2.3.Co;2

    Article  Google Scholar 

  32. Comeau AM, Douglas GM, Langille MG (2017) Microbiome helper: a custom and streamlined workflow for microbiome research. mSystems 2. https://doi.org/10.1128/mSystems.00127-16

  33. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17:10. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  34. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate illumina Paired-End reAd mergeR. Bioinformatics 30:614–620. https://doi.org/10.1093/bioinformatics/btt593

    Article  CAS  PubMed  Google Scholar 

  35. Rognes T, Flouri T, Nichols B, Quince C, Mahe F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584

    Article  PubMed  PubMed Central  Google Scholar 

  36. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuczynski J, Stombaugh J, Walters WA, Gonzalez A, Caporaso JG, Knight R (2011) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Bioinformatics Chapter 10: Unit 10 17. https://doi.org/10.1002/0471250953.bi1007s36

  38. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kopylova E, Noe L, Touzet H (2012) SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28:3211–3217. https://doi.org/10.1093/bioinformatics/bts611

    Article  CAS  PubMed  Google Scholar 

  40. Mercier C, Boyer F, Bonin A, Coissac E (2013) SUMATRA and SUMACLUST: fast and exact comparison and clustering of sequences. Laboratoire d’Écologie Alpine, France

    Google Scholar 

  41. Angly FE, Dennis PG, Skarshewski A, Vanwonterghem I, Hugenholtz P, Tyson GW (2014) CopyRighter: a rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction. Microbiome 2:11. https://doi.org/10.1186/2049-2618-2-11

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kembel SW, Wu M, Eisen JA, Green JL (2012) Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance. PLoS Comput Biol 8:e1002743. https://doi.org/10.1371/journal.pcbi.1002743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Vegan: community ecology package. R package version 2.3-1. Oulu, Finland

  44. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  45. Fox J, Weisberg S (2011) An {R} companion to applied regression. vol Second. Sage, Thousand Oaks

  46. Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510. https://doi.org/10.1016/j.tree.2005.05.011

    Article  PubMed  Google Scholar 

  47. Didan K (2015) MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS Land Processes DAAC

  48. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schwiertz A, Hold GL, Duncan SH, Gruhl B, Collins MD, Lawson PA, Flint HJ, Blaut M (2002) Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. Syst Appl Microbiol 25:46–51. https://doi.org/10.1078/0723-2020-00096

    Article  CAS  PubMed  Google Scholar 

  50. Eeckhaut V, Van Immerseel F, Pasmans F, De Brandt E, Haesebrouck F, Ducatelle R, Vandamme P (2010) Anaerostipes butyraticus sp. nov., an anaerobic, butyrate-producing bacterium from Clostridium cluster XIVa isolated from broiler chicken caecal content, and emended description of the genus Anaerostipes. Int J Syst Evol Microbiol 60:1108–1112. https://doi.org/10.1099/ijs.0.015289-0

    Article  CAS  PubMed  Google Scholar 

  51. Bui TP, de Vos WM, Plugge CM (2014) Anaerostipes rhamnosivorans sp. nov., a human intestinal, butyrate-forming bacterium. Int J Syst Evol Microbiol 64:787–793. https://doi.org/10.1099/ijs.0.055061-0

    Article  CAS  PubMed  Google Scholar 

  52. Pough FH, Janis CM, Heiser JB (2013) Vertebrate life. Pearson International Edition

  53. Bestion E, Jacob S, Zinger L, Di Gesu L, Richard M, White J, Cote J (2017) Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nat Ecol Evol 1:161. https://doi.org/10.1038/s41559-017-0161

    Article  PubMed  Google Scholar 

  54. Suzuki TA (2017) Links between natural variation in the microbiome and host fitness in wild mammals. Integr Comp Biol 57:756–769. https://doi.org/10.1093/icb/icx104

    Article  CAS  PubMed  Google Scholar 

  55. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman W (2011) Bergey’s manual of systematic bacteriology: volume 3: the firmicutes. Springer Science & Business Media

  56. Itoh T, Iino T (2013) Phylogeny and biological features of thermophiles. In: Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic microbes in environmental and industrial biotechnology: biotechnology of thermophiles. Springer Netherlands, Dordrecht, pp 249–270

    Chapter  Google Scholar 

  57. Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-i, Ludwig W, Whitman WB (2012) Bergey’s manual of systematic bacteriology: volume 5: the actinobacteria. Springer-Verlag, New York

    Book  Google Scholar 

  58. Cho GS, Ritzmann F, Eckstein M, Huch M, Briviba K, Behsnilian D, Neve H, Franz CM (2016) Quantification of Slackia and Eggerthella spp. in human feces and adhesion of representatives strains to Caco-2 cells. Front Microbiol 7:658. https://doi.org/10.3389/fmicb.2016.00658

    Article  PubMed  PubMed Central  Google Scholar 

  59. Clavel T, Henderson G, Alpert CA, Philippe C, Rigottier-Gois L, Dore J, Blaut M (2005) Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans. Appl Environ Microbiol 71:6077–6085. https://doi.org/10.1128/AEM.71.10.6077-6085.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Clavel T, Henderson G, Engst W, Dore J, Blaut M (2006) Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol Ecol 55:471–478. https://doi.org/10.1111/j.1574-6941.2005.00057.x

    Article  CAS  PubMed  Google Scholar 

  61. Jin J-S, Zhao Y-F, Nakamura N, Akao T, Kakiuchi N, Min B-S, Hattori M (2007) Enantioselective dehydroxylation of enterodiol and enterolactone precursors by human intestinal bacteria. Biol Pharm Bull 30:2113–2119. https://doi.org/10.1248/bpb.30.2113

    Article  CAS  PubMed  Google Scholar 

  62. Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA, Thomas BC, Goodrich JK, Bell JT, Spector TD, Banfield JF, Ley RE (2013) The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. Elife 2:e01102. https://doi.org/10.7554/eLife.01102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zeng B, Han S, Wang P, Wen B, Jian W, Guo W, Yu Z, Du D, Fu X, Kong F, Yang M, Si X, Zhao J, Li Y (2015) The bacterial communities associated with fecal types and body weight of rex rabbits. Sci Rep 5:9342. https://doi.org/10.1038/srep09342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Hao-Ting Chang for guidance regarding analysis of normalized difference vegetation index, A. Sanyoshi and K. Iguchi of the University of Tokyo Hokkaido Forest for their cooperation in the field, and John Wang for helpful comments for this manuscript.

Funding

This work was supported by the Ministry of Science and Technology, Taiwan (MOST 103-2311-B-002-001 and MOST 106-2633-B-006-004).

Author information

Authors and Affiliations

Authors

Contributions

P-YL, A-CC, and H-TY conceived the study design; PY-L, HW-C, TO, and H-TY collected sample; P-YL, A-CC, and S-WH conducted experiments; P-YL and A-CC conducted bioinformatics analyses; P-YL, A-CC, S-WH, and H-TY wrote the first draft. All authors contributed to data interpretation and preparation of the final manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Hon-Tsen Yu.

Electronic Supplementary Material

ESM 1

(PDF 541 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, PY., Cheng, AC., Huang, SW. et al. Variations in Gut Microbiota of Siberian Flying Squirrels Correspond to Seasonal Phenological Changes in Their Hokkaido Subarctic Forest Ecosystem. Microb Ecol 78, 223–231 (2019). https://doi.org/10.1007/s00248-018-1278-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1278-x

Keywords

Navigation