Skip to main content

Advertisement

Log in

Changes in the Microbial Community of Pinus arizonica Saplings After Being Colonized by the Bark Beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae)

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The death of trees is an ecological process that promotes regeneration, organic matter recycling, and the structure of communities. However, diverse biotic and abiotic factors can disturb this process. Dendroctonus bark beetles (Curculionidae: Scolytinae) are natural inhabitants of pine forests, some of which produce periodic outbreaks, killing thousands of trees in the process. These insects spend almost their entire life cycle under tree bark, where they reproduce and feed on phloem. Tunneling and feeding of the beetles result in the death of the tree and an alteration of the resident microbiota as well as the introduction of microbes that the beetles vector. To understand how microbial communities in subcortical tissues of pines change after they are colonized by the bark beetle Dendroctonus rhizophagus, we compare both the bacterial and fungal community structures in two colonization stages of Pinus arizonica (Arizona pine) employing Illumina MiSeq. Our findings showed significant differences in diversity and the dominance of bacterial community in the two colonization stages with Shannon (P = 0.004) and Simpson (P = 0.0006) indices, respectively, but not in species richness with Chao1 (P = 0.19). In contrast, fungal communities in both stages showed significant differences in species richness with Chao1 (P = 0.0003) and a diversity with Shannon index (P = 0.038), but not in the dominance with the Simpson index (P = 0.12). The β-diversity also showed significant changes in the structure of bacterial and fungal communities along the colonization stages, maintaining the dominant members in both cases. Our results suggest that microbial communities present in the Arizona pine at the tree early colonization stage by bark beetle change predictably over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Franklin JF, Shugart HH, Harmon ME (1987) Tree death as an ecological process. BioScience 37:550–556

    Article  Google Scholar 

  2. Castello JD, Leopold DJ, Smallidge PJ (1995) Pathogens, patterns, and processes in forest ecosystems. BioScience 45:16–24

    Article  Google Scholar 

  3. Anderegg WRL, Kane JM, Anderegg LDL (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Chang 3:30–36

    Article  Google Scholar 

  4. Wood SL (1982) The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Nat Mem 6:1–1356. https://doi.org/10.1038/NCLIMATE1635

    Article  Google Scholar 

  5. Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. BioScience 58:501–517. https://doi.org/10.1641/B580607

    Article  Google Scholar 

  6. Blomquist GJ, Figueroa-Teran R, Aw M, Song M, Gorzalski A, Abbott NL, Chang E, Tittiger C (2010) Pheromone production in bark beetles. Insect Biochem Mol Biol 40:699–712. https://doi.org/10.1016/j.ibmb.2010.07.013

    Article  CAS  PubMed  Google Scholar 

  7. Fettig CJ, Klepzig KD, Billings RF, Munson AS, Nebeker TE, Negrón JF, Nowak JT (2007) The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. For Ecol Manag 238:24–53. https://doi.org/10.1016/J.FORECO.2006.10.011

    Article  Google Scholar 

  8. Parmeter JR, Slaughter GW, Chen MM, Wood DL, Stubb HA (1989) Single and mixed inoculations of ponderosa pine with fungal associates of Dendroctonus spp. Phytopathology 79:768–772. https://doi.org/10.1094/Phyto-79-768

    Article  Google Scholar 

  9. Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42:179–206. https://doi.org/10.1146/annurev.ento.42.1.179

    Article  CAS  PubMed  Google Scholar 

  10. Lewinsohn D, Lewinsohn E, Bertagnolli CL, Patridge AD (1994) Blue-stain fungi and their transport structures on the Douglas fir beetle. Can J For Res 24:2275–2283. https://doi.org/10.1139/x94-292

    Article  Google Scholar 

  11. Franceschi VR, Krokene P, Christiansen E, Krekling T (2005) Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol 167:353–376. https://doi.org/10.1111/j.1469-8137.2005.01436.x

    Article  CAS  PubMed  Google Scholar 

  12. Keeling CI, Bohlmann J (2006) Diterpene resin acids in conifers. Phytochemistry 67:2415–2423. https://doi.org/10.1016/J.PHYTOCHEM.2006.08.019

    Article  CAS  PubMed  Google Scholar 

  13. Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893. https://doi.org/10.1111/j.1462-2920.2010.02258.x

    Article  PubMed  PubMed Central  Google Scholar 

  14. Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209. https://doi.org/10.1186/gb-2013-14-6-209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Strid Y, Schroeder M, Lindahl B, Ihrmark K, Stenlid J (2014) Bark beetles have a decisive impact on fungal communities in Norway spruce stem sections. Fungal Ecol 7:47–58. https://doi.org/10.1016/j.funeco.2013.09.003

    Article  Google Scholar 

  16. Rivera FN, González E, Gomez Z, López N, Hernández-Rodríguez C, Berkov A, Zúñiga G (2009) Gut-associated yeast in bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae). Biol J Linn Soc 98:325–342. https://doi.org/10.1111/j.1095-8312.2009.01289.x

    Article  Google Scholar 

  17. Durand AA, Bergeron A, Constant P, Buffet JP, Déziel E, Guertin C (2015) Surveying the endomicrobiome and ectomicrobiome of bark beetles: the case of Dendroctonus simplex. Sci Rep 5:17190. https://doi.org/10.1038/srep17190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Briones-Roblero CI, Hernández-García JA, Gonzalez-Escobedo R, Soto-Robles LV, Rivera-Orduña FN, Zúñiga G (2017) Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages. PLoS One 12:e0175470. https://doi.org/10.1371/journal.pone.0175470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hernández-García JA, Briones-Roblero CI, Rivera-Orduña FN, Zúñiga G (2017) Revealing the gut bacteriome of Dendroctonus bark beetles (Curculionidae: Scolytinae): diversity, core members and co-evolutionary patterns. Sci Rep 7(13864):13864. https://doi.org/10.1038/s41598-017-14031-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bleiker KP, Potter SE, Lauzon CR, Six DL (2009) Transport of fungal symbionts by mountain pine beetles. Can Entomol 141:503–514. https://doi.org/10.4039/n09-034

    Article  Google Scholar 

  21. Bracewell RR, Six DL (2014) Broadscale specificity in a bark beetle-fungal symbiosis: a spatio-temporal analysis of the mycangial fungi of the western pine beetle. Microb Ecol 68:859–870. https://doi.org/10.1007/s00248-014-0449-7

    Article  PubMed  Google Scholar 

  22. Klepzig KD, Hofstetter RW (2011) From attack to emergence: interactions between the southern pine beetle, mites, microbes, and trees. In: Coulson RN, Klepzig KD (eds) Southern pine beetle II. General Technical Report SRS-140. Department of Agriculture Forest Service, Southern Research Station, Asheville, pp 141–152

  23. Hofstetter RW, Dinkins-Bookwalter J, Davis TS, Klepzig KD (2015) Symbiotic associations of bark beetles. In: Vega FE, Hofstetter RW (eds) Bark Beetles. Elsevier, Amsterdam, pp 209–245. https://doi.org/10.1016/B978-0-12-417156-5.00006-X

    Chapter  Google Scholar 

  24. Carrell AA, Frank AC (2014) Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Front Microbiol 5:333. https://doi.org/10.3389/fmicb.2014.00333

    Article  PubMed  PubMed Central  Google Scholar 

  25. Carrell AA, Frank AC (2015) Bacterial endophyte communities in the foliage of coast redwood and giant sequoia. Front Microbiol 6:e01008. https://doi.org/10.3389/fmicb.2015.01008

    Article  Google Scholar 

  26. Carrell AA, Carper DL, Frank AC (2016) Subalpine conifers in different geographical locations host highly similar foliar bacterial endophyte communities. FEMS Microbiol Ecol 92:fiw124. https://doi.org/10.1093/femsec/fiw124

    Article  CAS  PubMed  Google Scholar 

  27. Rúa MA, Wilson EC, Steele S, Munters AR, Hoeksema JD, Frank AC (2016) Associations between ectomycorrhizal fungi and bacterial needle endophytes in Pinus radiata: implications for biotic selection of microbial communities. Front Microbiol 7:399. https://doi.org/10.3389/fmicb.2016.00399

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gonzalez-Escobedo R, Briones-Roblero CI, Pineda-Mendoza RM, Rivera-Orduña FN, Zúñiga G (2018) Bacteriome from Pinus arizonica and P. durangensis: diversity, comparison of assemblages, and overlapping degree with the gut bacterial community of a bark beetle that kills pines. Front Microbiol 9:77. https://doi.org/10.3389/fmicb.2018.00077

    Article  PubMed  PubMed Central  Google Scholar 

  29. Roth M, Hussain A, Cale JA, Erbilgin N (2018) Successful colonization of lodgepole pine trees by mountain pine beetle increased monoterpene production and exhausted carbohydrate reserves. J Chem Ecol 44:209–214. https://doi.org/10.1007/s10886-017-0922-0

    Article  CAS  PubMed  Google Scholar 

  30. Mendoza MG, Salinas-Moreno Y, Olivo-Martínez A, Zúñiga G (2011) Factors influencing the geographical distribution of Dendroctonus rhizophagus (Coleoptera: Curculionidae: Scolytinae) in the Sierra Madre Occidental, Mexico. Environ Entomol 40:549–559. https://doi.org/10.1603/EN10059

    Article  PubMed  Google Scholar 

  31. Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579. https://doi.org/10.1038/ismej.2011.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bokulich NA, Mills DA (2013) Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl Environ Microbiol 79:2519–2526. https://doi.org/10.1128/AEM.03870-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584

    Article  PubMed  PubMed Central  Google Scholar 

  35. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH (2013) Towards a unified paradigm for sequence-based identification of Fungi. Mol Ecol 22:5271–5277. https://doi.org/10.1111/mec.12481

    Article  CAS  PubMed  Google Scholar 

  38. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  40. Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html Accessed 26 March 2018

  41. Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  42. Shannon CA (1948) Mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  43. Simpson EH (1949) Measurement of diversity. Nature 163:688–688

    Article  Google Scholar 

  44. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264

    Article  Google Scholar 

  45. Rohlf FJ (1997) NTSYSpc Numerical taxonomy and multivariate analysis system version 2.0 user guide. Applied Biostatistics Inc., East Setauket

    Google Scholar 

  46. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  47. Zhang HB, Yang MX, Tu R (2008) Unexpectedly high bacterial diversity in decaying wood of a conifer as revealed by a molecular method. Int Biodeterior Biodegrad 62:471–474 https://doi.org/10.1016/j.ibiod.2008.06.001

    Article  CAS  Google Scholar 

  48. Sun H, Terhonen E, Kasanen R, Asiegbu FO (2014) Diversity and community structure of primary wood-inhabiting bacteria in boreal forest. Geomicrobiol J 31:315–324. https://doi.org/10.1080/01490451.2013.827763

    Article  CAS  Google Scholar 

  49. Hoppe B, Krger K, Kahl T, Arnstadt T, Buscot F, Bauhus J, Wubet T (2015) A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies. Sci Rep 5:9456. https://doi.org/10.1038/srep09456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rinta-Kanto J, Sinkko H, Rajala T et al (2016) Natural decay process affects the abundance and community structure of bacteria and Archaea in Picea abies logs. FEMS Microbiol Ecol 92:403–410. https://doi.org/10.1093/femsec/fiw087

    Article  CAS  Google Scholar 

  51. de Boer W, van der Wal A (2008) Interactions between saprotrophic basidiomycetes and bacteria. In: Boddy L, Frankland JC, van West P (eds) Ecology of saprotrophic Basidiomycetes. Elsevier, Amsterdam, pp 143–153

    Chapter  Google Scholar 

  52. Valášková V, de Boer W, Gunnewiek PJK, Pospíšek M, Baldrian P (2009) Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J 3:1218–1221. https://doi.org/10.1038/ismej.2009.64

    Article  CAS  PubMed  Google Scholar 

  53. Bomberg M, Timonen S (2007) Distribution of Cren- and Euryarchaeota in scots pine mycorrhizospheres and boreal forest humus. Microb Ecol 54:406–416. https://doi.org/10.1007/s00248-007-9232-3

    Article  CAS  PubMed  Google Scholar 

  54. Bomberg M, Timonen S (2009) Effect of tree species and mycorrhizal colonization on the archaeal population of boreal forest rhizospheres. Appl Environ Microbiol 75:308–315. https://doi.org/10.1128/AEM.01739-08

    Article  CAS  PubMed  Google Scholar 

  55. Bates ST, Berg-Lyons DB, Caporosa JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soils. ISME J 5:908–917. https://doi.org/10.1038/ismej.2010.171

    Article  CAS  PubMed  Google Scholar 

  56. Angel R, Claus P, Conrad R (2012) Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 6:847–862. https://doi.org/10.1038/ismej.2011

    Article  CAS  PubMed  Google Scholar 

  57. Parfitt D, Hunt J, Dockrell D, Rogers HJ, Boddy L (2010) Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecol 3:338–346. https://doi.org/10.1016/j.funeco.2010.02.001

    Article  Google Scholar 

  58. Rajala T, Peltoniemi M, Pennanen T, Mäkipää R (2012) Fungal community dynamics in relation to substrate quality of decaying Norway spruce (Picea abies [L.] Karst.) logs in boreal forests. FEMS Microbiol Ecol 81:494–505. https://doi.org/10.1111/j.1574-6941.2012.01376.x

    Article  CAS  PubMed  Google Scholar 

  59. Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–41. https://doi.org/10.2307/20113262

    Article  Google Scholar 

  60. Lundell TK, Mäkelä MR, de Vries RP, Hildén KS (2014) Chapter eleven - genomics, lifestyles and future prospects of wood-decay and litter-decomposing Basidiomycota. In: Martin FM (ed) Advances in botanical research. Elsevier Academic Press, London, pp 329–370. https://doi.org/10.1016/B978-0-12-397940-7.00011-2

  61. Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, Levasseur A, Lombard V, Morin E, Otillar R, Lindquist EA, Sun H, LaButti KM, Schmutz J, Jabbour D, Luo H, Baker SE, Pisabarro AG, Walton JD, Blanchette RA, Henrissat B, Martin F, Cullen D, Hibbett DS, Grigoriev IV (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci U S A 111:9923–9928 https://doi.org/10.1073/pnas.1400592111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Johnston SR, Boddy L, Weightman AJ (2016) Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol Ecol 92:fiw179. https://doi.org/10.1093/femsec/fiw179

    Article  CAS  PubMed  Google Scholar 

  63. Adams AS, Aylward FO, Adams SM, Erbilgin N, Aukema BH, Currie CR, Suen G, Raffa KF (2013) Mountain pine beetles colonizing historical and naïve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl Environ Microbiol 79:3468–3475. https://doi.org/10.1128/AEM.00068-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cheng CH, Xu LT, Xu DD, Lou QZ, Lu M, Sun JH (2016) Does cryptic microbiota mitigate pine resistance to an invasive beetle–fungus complex? Implications for invasion potential. Sci Rep 6:33110. https://doi.org/10.1038/srep33110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wielkopolan B, Obrępalska-Stęplowska A (2016) Three-way interaction among plants, bacteria, and coleopteran insects. Planta 244:313–332. https://doi.org/10.1007/s00425-016-2543-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Morales-Jiménez J, Zúñiga G, Ramírez-Saad HC, Hernández-Rodríguez C (2012) Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb Ecol 64:268–278. https://doi.org/10.1007/s00248-011-9999-0

    Article  PubMed  Google Scholar 

  67. Briones-Roblero CI, Rodríguez-Díaz R, Santiago-Cruz JA, Zúñiga G, Rivera-Orduña FN (2017) Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae: Scolytinae). Folia Microbiol 62:1–9. https://doi.org/10.1007/s12223-016-0469-4

    Article  CAS  Google Scholar 

  68. Giordano L, Gonthier P, Varese GC, Miserere L, Nicolotti G (2009) Mycobiota inhabiting sapwood of healthy and declining scots pine (Pinus sylvestris L.) trees in the Alps. Fungal Divers 38:69–83

    Google Scholar 

  69. Proença DN, Francisco R, Kublik S, Schöler A, Vestergaard G, Schloter M, Morais PV (2017) The microbiome of endophytic, wood colonizing bacteria from pine trees as affected by pine wilt disease. Sci Rep 7:4205. https://doi.org/10.1038/s41598-017-04141-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rayner ADM, Boddy L (1988) Fungal decomposition of wood: its biology and ecology. John Willey & Sons, Chichester

    Google Scholar 

  71. Fukasawa Y, Osono T, Takeda H (2009) Microfungus communities of Japanese beech logs at different stages of decay in a cool temperate deciduous forest. Can J For Res 39:1606–1614. https://doi.org/10.1139/X09-080

    Article  CAS  Google Scholar 

  72. Hodge A, Fitter AH (2013) Microbial mediation of plant competition and community structure. Funct Ecol 27:865–875. https://doi.org/10.1111/1365-2435.12002

    Article  Google Scholar 

  73. Zhou F, Lou Q, Wang B, Xu L, Cheng C, Lu M, Sun J (2016) Altered carbohydrates allocation by associated bacteria-fungi interactions in a bark beetle-microbe symbiosis. Sci Rep 6:20135. https://doi.org/10.1038/srep20135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the COPAMEX for allowing the use of its facilities. This work was part of RG-E Ph.D. dissertation. He is a fellow of CONACyT (275347) and “Beca de Estímulo Institucional de Formación de Investigadores” (BEIFI-IPN). We thank the anonymous reviewers for their valuable comments on our manuscript.

Funding

This work was supported by the Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional (SIP 20180686).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Zúñiga.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic Supplementary Material

ESM 1

(DOCX 3.68 mb)

ESM 2

(DOCX 251 mb)

ESM 3

(DOCX 295 kb)

ESM 4

(DOCX 1.28 mb)

ESM 5

(DOCX 18.7 kb)

ESM 6

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Escobedo, R., Briones-Roblero, C.I., López, M.F. et al. Changes in the Microbial Community of Pinus arizonica Saplings After Being Colonized by the Bark Beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae). Microb Ecol 78, 102–112 (2019). https://doi.org/10.1007/s00248-018-1274-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1274-1

Keywords

Navigation