Fungi from Admiralty Bay (King George Island, Antarctica) Soils and Marine Sediments

Abstract

Extreme environments such as the Antarctic can lead to the discovery of new microbial taxa, as well as to new microbial-derived natural products. Considering that little is known yet about the diversity and the genetic resources present in these habitats, the main objective of this study was to evaluate the fungal communities from extreme environments collected at Aldmiralty Bay (Antarctica). A total of 891 and 226 isolates was obtained from soil and marine sediment samples, respectively. The most abundant isolates from soil samples were representatives of the genera Leucosporidium, Pseudogymnoascus, and a non-identified Ascomycota NIA6. Metschnikowia sp. was the most abundant taxon from marine samples, followed by isolates from the genera Penicillium and Pseudogymnoascus. Many of the genera were exclusive in marine sediment or terrestrial samples. However, representatives of eight genera were found in both types of samples. Data from non-metric multidimensional scaling showed that each sampling site is unique in their physical-chemical composition and fungal community. Biotechnological potential in relation to enzymatic production at low/moderate temperatures was also investigated. Ligninolytic enzymes were produced by few isolates from root-associated soil. Among the fungi isolated from marine sediments, 16 yeasts and nine fungi showed lipase activity and three yeasts and six filamentous fungi protease activity. The present study permitted increasing our knowledge on the diversity of fungi that inhabit the Antarctic, finding genera that have never been reported in this environment before and discovering putative new species of fungi.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013:512840–512828. https://doi.org/10.1155/2013/512840

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Shivaji S, Prasad GS (2009) Antarctic yeasts: biodiversity and potential applications. In: Yeast biotechnology: diversity and applications. pp 3–18

  3. 3.

    Singh J, Dubey AK, Singh RP (2011) Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations. Rev Environ Sci Biotechnol 10:63–77

    Article  Google Scholar 

  4. 4.

    Berlemont R, Pipers D, Delsaute M, Angiono F, Feller G, Galleni M, Power P (2011) Exploring the Antarctic soil metagenome as a source of novel cold-adapted enzymes and genetic mobile elements. Rev Argent Microbiol 43:94–103. https://doi.org/10.1590/S0325-75412011000200005

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Pointing SB, Chan Y, Lacap DC, Lau MCY, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci 106:19964–19969. https://doi.org/10.1073/pnas.0908274106

    Article  PubMed  Google Scholar 

  6. 6.

    Wynn-Williams DD (1996) Antarctic microbial diversity: the basis of polar ecosystem processes. Biodivers Conserv 5:1271–1293. https://doi.org/10.1007/BF00051979

    Article  Google Scholar 

  7. 7.

    D’Elia T, Veerapaneni R, Theraisnathan V, Rogers S (2009) Isolation of fungi from Lake Vostok accretion ice. Mycologia 101:751–763

    Article  Google Scholar 

  8. 8.

    Onofri S, Selbmann L, Zucconi L, Pagano S (2004) Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237. https://doi.org/10.1016/j.pss.2003.08.019

    Article  Google Scholar 

  9. 9.

    Yergeau E, Kowalchuk GA (2008) Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency. Environ Microbiol 10:2223–2235. https://doi.org/10.1111/j.1462-2920.2008.01644.x

    Article  PubMed  Google Scholar 

  10. 10.

    Vaz ABM, Rosa LH, Vieira MLA, Garcia V, Brandão LR, Teixeira LCRS, Moliné M, Libkind D, van Broock M, Rosa CA (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947. https://doi.org/10.1590/S1517-83822011000300012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Georlette D, Blaise V, Collins T, D'Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42. https://doi.org/10.1016/j.femsre.2003.07.003

    CAS  Article  Google Scholar 

  12. 12.

    Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433. https://doi.org/10.1146/annurev.biochem.75.103004.142723

    CAS  Article  Google Scholar 

  13. 13.

    Maciel MJM, Castro e Silva A, Ribeiro HCT (2010) Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: a review. Electron J Biotechnol 13:1–13. https://doi.org/10.2225/vol13-issue6-fulltext-2

    CAS  Article  Google Scholar 

  14. 14.

    Pannu JS, Kapoor RK (2014) Microbial laccases: a mini-review on their production, purification and applications. Int J Pharm Arch 3:528–536

    Google Scholar 

  15. 15.

    Viswanath B, Rajesh B, Janardhan A et al (2014) Fungal laccases and their applications in bioremediation. Enzyme Res. https://doi.org/10.1155/2014/163242

  16. 16.

    Cotârleţ M, Negoiţǎ TGH, Bahrim GE, Stougaard P (2011) Partial characterization of cold active amylases and proteases of Streptomyces sp from Antarctica. Braz J Microbiol 42:868–877. https://doi.org/10.1590/S1517-83822011000300005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Damaso MCT, Passianoto MA, De Freitas SC et al (2008) Utilization of agroindustrial residues for lipase production by solid-state fermentation. Braz J Microbiol 39:676–681. https://doi.org/10.1590/S1517-83822008000400015

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Duarte AWF, dos Santos JA, Vianna MV et al (2017) Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Crit Rev Biotechnol 38:600–619 1–20

    Article  Google Scholar 

  19. 19.

    Camargo O, Moniz A, Jorge J, Valadares J (2009) Métodos de Análise Química, Mineralógica e Física dos Solos do Instituto Agronômico de Campinas. In: Boletim Técnico 106. Campinas, pp 47–50

  20. 20.

    Mehra O, Jackson M (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. In: National Conference on Clays and Clays Minerals, 7, Washington, D.C. Pergamon Press, pp 317–327

  21. 21.

    McKeague JA, Day JH (1966) Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can J Soil Sci 46:13–22. https://doi.org/10.4141/cjss66-003

    CAS  Article  Google Scholar 

  22. 22.

    McKeague JA, Brydon JE, Miles NM (1971) Differentiation of forms of extractable iron and aluminum in soils1. Soil Sci Soc Am J 35:33. https://doi.org/10.2136/sssaj1971.03615995003500010016x

    CAS  Article  Google Scholar 

  23. 23.

    Savitha J, Srividya S, Jagat R et al (2007) Identification of potential fungal strain(s) for the production of inducible, extracellular and alkalophilic lipase. Afr J Biotechnol 6:564–568

    CAS  Google Scholar 

  24. 24.

    Lacerda LT, Gusmão LFP, Rodrigues A (2018) Diversity of endophytic fungi in Eucalyptus microcorys assessed by complementary isolation methods. Mycol Prog 17:1–9. https://doi.org/10.1007/s11557-018-1385-6

    Article  Google Scholar 

  25. 25.

    Gelfand D, Sninsky J, White T (1990) PCR protocols: a guide to methods and applications. Academic Press, New York

    Google Scholar 

  26. 26.

    Sampaio JP, Gadanho M, Santos S et al (2001) Polyphasic taxonomy of the basidiomycetous yeast genus Rhodosporidium: Rhodosporidium kratochvilovae and related anamorphic species. Int J Syst Evol Microbiol 51:687–697. https://doi.org/10.1099/00207713-51-2-687

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    De Almeida JMGCF (2005) Yeast community survey in the Tagus estuary. FEMS Microbiol Ecol 53:295–303. https://doi.org/10.1016/j.femsec.2005.01.006

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Duarte AWF, Dayo-Owoyemi I, Nobre FS, Pagnocca FC, Chaud LCS, Pessoa A, Felipe MGA, Sette LD (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17:1023–1035. https://doi.org/10.1007/s00792-013-0584-y

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 73:331–371. https://doi.org/10.1023/A:1001761008817

    CAS  Article  Google Scholar 

  30. 30.

    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  31. 31.

    Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    CAS  Article  Google Scholar 

  33. 33.

    Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Hammer Ø, Harper DATAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):1–9. https://doi.org/10.1016/j.bcp.2008.05.025

    CAS  Article  Google Scholar 

  35. 35.

    Colwell RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples. Version 9 and earlier. User’s Guide and application. http://purl.oclc.org/estimates

  36. 36.

    Verma AK, Raghukumar C, Verma P, Shouche YS, Naik CG (2010) Four marine-derived fungi for bioremediation of raw textile mill effluents. Biodegradation 21:217–233. https://doi.org/10.1007/s10532-009-9295-6

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Kouker G, Jaeger KE (1987) Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53:211–213

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Arora DS, Gill PK (2001) Comparison of two assay procedures for lignin peroxidase. Enzym Microb Technol 28:602–605. https://doi.org/10.1016/S0141-0229(01)00302-7

    CAS  Article  Google Scholar 

  39. 39.

    Wariishi H, Valli K, Gold MH (1992) Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: kinetic mechanism and role of chelators. J Biol Chem 267:23688–23695. https://doi.org/10.1006/abbi.1998.0602

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Buswell JA, Cai Y, Chang S (1995) Effect of nutrient nitrogen on manganese peroxidase and lacase production by Lentinula (Lentinus) edodes. FEMS Microbiol Lett 128:81–87

    CAS  Article  Google Scholar 

  41. 41.

    Yang J, Koga Y, Nakano H, Yamane T (2002) Modifying the chain-length selectivity of the lipase from Burkholderia cepacia KWI-56 through in vitro combinatorial mutagenesis in the substrate-binding site. Protein Eng 15:147–152. https://doi.org/10.1093/protein/15.2.147

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Charney J, Tomarelli RM (1947) A colorimetric method for the determination of the proteolytic activity of duodenal juice. J Biol Chem 171:501–505

    CAS  PubMed  Google Scholar 

  43. 43.

    Costa R, Götz M, Mrotzek N et al (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249. https://doi.org/10.1111/j.1574-6941.2005.00026.x

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Berríos G, Cabrera G, Gidekel M, Gutiérrez-Moraga A (2013) Characterization of a novel antarctic plant growth-promoting bacterial strain and its interaction with antarctic hair grass (Deschampsia antarctica Desv). Polar Biol 36:349–362. https://doi.org/10.1007/s00300-012-1264-6

    Article  Google Scholar 

  45. 45.

    Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141. https://doi.org/10.1007/s11157-006-9107-y

    Article  Google Scholar 

  46. 46.

    Carrasco M, Rozas J, Barahona S, Alcaíno J, Cifuentes V, Baeza M (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 12:251. https://doi.org/10.1186/1471-2180-12-251

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya NS, Pupo D, Alves TMA, S Junior PA, Romanha AJ, Zani CL, Cantrell CL, Rosa CA, Rosa LH (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451. https://doi.org/10.1038/ismej.2013.77

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Loque CP, Medeiros AO, Pellizzari FM, Oliveira EC, Rosa CA, Rosa LH (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648. https://doi.org/10.1007/S00300-009-0740-0

    Article  Google Scholar 

  49. 49.

    Sampaio J (2011) Leucosporidium Fell, Statzell, I. L. Hunter-Phaff (1969). In: Kurtzman CP, Fell J, Boekhout (eds) The yeasts: a taxonomic study, v. 3, part. Elsevier, Amsterdam, pp 1485–1494

    Google Scholar 

  50. 50.

    Hayes MA (2012) The Geomyces fungi: ecology and distribution. Bioscience 62:819–823. https://doi.org/10.1525/bio.2012.62.9.7

    Article  Google Scholar 

  51. 51.

    Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea region of Antarctica. Soil Biol Biochem 38:3057–3064. https://doi.org/10.1016/j.soilbio.2006.01.016

    CAS  Article  Google Scholar 

  52. 52.

    McRae CF, Seppelt RD, Hocking AD (1999) Penicillium species from terrestrial habitats in the Windmill Islands, East Antarctica, including a new species, Penicillium antarcticum. Polar Biol 21:97–111. https://doi.org/10.1007/s003000050340

    Article  Google Scholar 

  53. 53.

    Crous PW, Braun U, Schubert K, Groenewald JZ (2007) Delimiting Cladosporium from morphologically similar genera. Stud Mycol 58:33–56. https://doi.org/10.3114/sim.2007.58.02

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Cruywagen EM, Crous PW, Roux J, Slippers B, Wingfield MJ (2015) Fungi associated with black mould on baobab trees in southern Africa. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 108:85–95. https://doi.org/10.1007/s10482-015-0466-7

    Article  Google Scholar 

  55. 55.

    Piñar G, Sterflinger K, Pinzari F (2015) Unmasking the measles-like parchment discoloration: molecular and microanalytical approach. Environ Microbiol 17:427–443. https://doi.org/10.1111/1462-2920.12471

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Sandoval-Denis M, Sutton DA, Martin-Vicente A, Cano-Lira JF, Wiederhold N, Guarro J, Gené J (2015) Cladosporium species recovered from clinical samples in the United States. J Clin Microbiol 53:2990–3000. https://doi.org/10.1128/JCM.01482-15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Zhang E, Tanaka T, Tajima M, Tsuboi R, Nishikawa A, Sugita T (2011) Characterization of the skin fungal microbiota in patients with atopic dermatitis and in healthy subjects. Microbiol Immunol 55:625–632. https://doi.org/10.1111/j.1348-0421.2011.00364.x

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Rossman AY, Allen WC, Castlebury LA (2016) New combinations of plant-associated fungi resulting from the change to one name for fungi. IMA Fungus 7:1–7. https://doi.org/10.5598/imafungus.2016.07.01.01

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Bonugli-Santos R, Passarini C, Rodrigues M et al (2009) Avaliação do potencial biosurfactante de fungos filamentosos associados a cnidários marinhos com atividade de degradação de HPAs. Microbiol Foco 7:12–16

    Google Scholar 

  60. 60.

    Budziszewska J, Szypula W, Wilk M, Wrzosek M (2011) Paraconiothyrium babiogorense sp nov., a new endophyte from fir club moss Huperzia selago (Huperziaceae). Mycotaxon 115:457–468. https://doi.org/10.5248/115.457

    Article  Google Scholar 

  61. 61.

    Crous PW, Wingfield MJ, Guarro J, Cheewangkoon R, van der Bank M, Swart WJ, Stchigel AM, Cano-Lira JF, Roux J, Madrid H, Damm U, Wood AR, Shuttleworth LA, Hodges CS, Munster M, de Jesús Yáñez-Morales M, Zúñiga-Estrada L, Cruywagen EM, de Hoog GS, Silvera C, Najafzadeh J, Davison EM, Davison PJN, Barrett MD, Barrett RL, Manamgoda DS, Minnis AM, Kleczewski NM, Flory SL, Castlebury LA, Clay K, Hyde KD, Maússe-Sitoe SND, Chen S, Lechat C, Hairaud M, Lesage-Meessen L, Pawłowska J, Wilk M, Śliwińska-Wyrzychowska A, Mętrak M, Wrzosek M, Pavlic-Zupanc D, Maleme HM, Slippers B, Mac Cormack WP, Archuby DI, Grünwald NJ, Tellería MT, Dueñas M, Martín MP, Marincowitz S, de Beer ZW, Perez CA, Gené J, Marin-Felix Y, Groenewald JZ (2013) Fungal planet description sheets: 154 – 213. Persoonia 31:188–296. https://doi.org/10.3767/003158513X675925

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Gomes NGM, Lefranc F, Kijjoa A, Kiss R (2015) Can some marine-derived fungal metabolites become actual anticancer agents? Mar Drugs 13:3950–3991. https://doi.org/10.3390/md13063950

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Verkley GJM, Da Silva M, Wicklow DT, Crous PW (2004) Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Stud Mycol 50:323–335

    Google Scholar 

  64. 64.

    Upson R, Newsham KK, Bridge PD, Pearce DA, Read DJ (2009) Taxonomic affinities of dark septate root endophytes of Colobanthus quitensis and Deschampsia antarctica, the two native Antarctic vascular plant species. Fungal Ecol 2:184–196. https://doi.org/10.1016/j.funeco.2009.02.004

    Article  Google Scholar 

  65. 65.

    Gonçalves VN, Carvalho CR, Johann S, Mendes G, Alves TMA, Zani CL, Junior PAS, Murta SMF, Romanha AJ, Cantrell CL, Rosa CA, Rosa LH (2015) Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol 38:1143–1152. https://doi.org/10.1007/s00300-015-1672-5

    Article  Google Scholar 

  66. 66.

    Haichar FEZ, Marol C, Berge O et al (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230. https://doi.org/10.1038/ismej.2008.80

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257. https://doi.org/10.1007/s11104-008-9814-y

    CAS  Article  Google Scholar 

  68. 68.

    Teixeira LCRS, Yeargeau E, Balieiro FC et al (2013) Plant and bird presence strongly influences the microbial communities in soils of Admiralty Bay, Maritime Antarctica. PLoS One 8:e66109. https://doi.org/10.1371/journal.pone.0066109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Dennis PG, Rushton SP, Newsham KK, Lauducina VA, Ord VJ, Daniell TJ, O'Donnell AG, Hopkins DW (2012) Soil fungal community composition does not alter along a latitudinal gradient through the maritime and sub-Antarctic. Fungal Ecol 5:403–408. https://doi.org/10.1016/j.funeco.2011.12.002

    Article  Google Scholar 

  70. 70.

    Vishniac HS (1996) Biodiversity of yeasts and filamentous microfungi in terrestrial Antarctic ecosystems. Biodivers Conserv 5:1365–1378. https://doi.org/10.1007/BF00051983

    Article  Google Scholar 

  71. 71.

    Duarte AWF (2014) Biodiversidade de leveduras derivadas de ecossistemas Antárticos marinhos e terrestres e prospecção de lipases. Universidade de São Paulo

  72. 72.

    Vakhlu J, Kour A (2006) Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron J Biotechnol 9:69–85

    CAS  Article  Google Scholar 

  73. 73.

    Vaca I, Faúndez C, Maza F, Paillavil B, Hernández V, Acosta F, Levicán G, Martínez C, Chávez R (2013) Cultivable psychrotolerant yeasts associated with Antarctic marine sponges. World J Microbiol Biotechnol 29:183–189. https://doi.org/10.1007/s11274-012-1159-2

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Chaturvedi V, Springer DJ, Behr MJ, Ramani R, Li X, Peck MK, Ren P, Bopp DJ, Wood B, Samsonoff WA, Butchkoski CM, Hicks AC, Stone WB, Rudd RJ, Chaturvedi S (2010) Morphological and molecular characterizations of psychrophilic fungus Geomyces destructans from New York bats with white nose syndrome (WNS). PLoS One 5:e10783. https://doi.org/10.1371/journal.pone.0010783

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Edgington S, Thompson E, Moore D, Hughes KA, Bridge P (2014) Investigating the insecticidal potential of Geomyces (Myxotrichaceae: Helotiales) and Mortierella (Mortierellacea: Mortierellales) isolated from Antarctica. Springerplus 3:289. https://doi.org/10.1186/2193-1801-3-289

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Krishnan A, Alias SA, Wong CMVL, Pang KL, Convey P (2011) Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol 34:1535–1542. https://doi.org/10.1007/s00300-011-1012-3

    Article  Google Scholar 

  77. 77.

    Santos W, Nascimento T, Maciel A, et al (2015) A rapid screening of significative variables in the production of proteases and amylases by submerged fermentation of Geomyces pannorum S2B. In: Anais do XXVIII Congresso Brasileiro de Microbiologia. Florianópolis

Download references

Funding

This paper was supported by grants financed by FAPESP (reference numbers: #2013/19486-0 and #2016/07957-7), and by scholarships financed by CAPES. LDS and AR thank the National Council for Scientific and Technological Development (CNPq) for Productivity Fellowships 304103/2013-6 and 305341/2015-4. LDS thanks MICROSFERA project (PROANTAR/CNPq) for the support with sample collection.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lara Durães Sette.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 926 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wentzel, L.C.P., Inforsato, F.J., Montoya, Q.V. et al. Fungi from Admiralty Bay (King George Island, Antarctica) Soils and Marine Sediments. Microb Ecol 77, 12–24 (2019). https://doi.org/10.1007/s00248-018-1217-x

Download citation

Keywords

  • Extremophiles
  • Fungal diversity
  • Marine mycology
  • Maritime Antarctica
  • Cold-adapted enzymes