Microbial Ecology

, Volume 77, Issue 1, pp 186–190 | Cite as

The Legacy Effects of Winter Climate on Microbial Functioning After Snowmelt in a Subarctic Tundra

  • Maria VäisänenEmail author
  • Konstantin Gavazov
  • Eveline J. Krab
  • Ellen Dorrepaal
Soil Microbiology


Warming-induced increases in microbial CO2 release in northern tundra may positively feedback to climate change. However, shifts in microbial extracellular enzyme activities (EEAs) may alter the impacts of warming over the longer term. We investigated the in situ effects of 3 years of winter warming in combination with the in vitro effects of a rapid warming (6 days) on microbial CO2 release and EEAs in a subarctic tundra heath after snowmelt in spring. Winter warming did not change microbial CO2 release at ambient (10 °C) or at rapidly increased temperatures, i.e., a warm spell (18 °C) but induced changes (P < 0.1) in the Q10 of microbial respiration and an oxidative EEA. Thus, although warmer winters may induce legacy effects in microbial temperature acclimation, we found no evidence for changes in potential carbon mineralization after spring thaw.


Snow manipulation Extracellular enzymes β-Glucosidase Phenol oxidase Microbial respiration PLFA 



Jacob DeKraai assisted in field and laboratory work. PLFA analyses were conducted in the École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Laboratory of Ecological Systems (ECOS), in Lausanne, Switzerland. Ann Milbau, Jonatan Klaminder, Frida Keuper, Kobayashi Makoto, Gesche Blume-Werry, and Marina Becher assisted in setting the experimental design.

Funding Information

This project was funded by grants from Vetenskapsrådet (621-2011-5444), Formas (214-2011-788), and a Wallenberg Academy Fellowship (KAW 2012.0152) to E. Dorrepaal.

Supplementary material

248_2018_1213_MOESM1_ESM.docx (325 kb)
ESM 1 (DOCX 324 kb)


  1. 1.
    Sistla SA, Rastetter EB, Schimel JP (2014) Responses of a tundra system to warming using SCAMPS: a stoichiometrically coupled, acclimating microbe-plant-soil model. Ecol. Monogr. 84:151–170CrossRefGoogle Scholar
  2. 2.
    Karhu K, Auffret MD, Dungait JAJ, Hopkins DW, Prosser JI, Singh BK, Subke J-A, Wookey PA, Ågren GI, Sebastiá M-T, Gouriveau F, Bergkvist G, Meir P, Nottingham AT, Salinas N, Hartley IP (2014) Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513:81–84CrossRefGoogle Scholar
  3. 3.
    ACIA (2005) Impacts of a warming Arctic. Arctic climate impact assessment. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Schimel JP, Bilbrough C, Welker JM (2004) Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol. Biochem. 36:217–227CrossRefGoogle Scholar
  5. 5.
    Semenchuk PR, Christiansen CT, Grogan P, Elberling B, Cooper EJ (2016) Long-term experimentally deepened snow decreases growing-season respiration in a low-and high-arctic tundra ecosystem. J Geoph Res: Biogeosciences 121:1236–1248CrossRefGoogle Scholar
  6. 6.
    Buckeridge KM, Grogan P (2008) Deepened snow alters soil microbial nutrient limitations in arctic birch hummock tundra. Appl. Soil Ecol. 39:210–222CrossRefGoogle Scholar
  7. 7.
    Buckeridge KM, Grogan P (2010) Deepened snow increases late thaw biogeochemical pulses in mesic low arctic tundra. Biogeochemistry 10l:105–121CrossRefGoogle Scholar
  8. 8.
    Schmidt SK, Costello EK, Nemergut DR, Cleveland CC, Reed SC, Weintraub MN, Meyer AF, Martin AM (2007) Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology 88:1379–1385CrossRefGoogle Scholar
  9. 9.
    Sistla SA, Asao S, Schimel JP (2012) Detecting microbial N-limitation in tussock tundra soil: implications for Arctic soil organic carbon cycling. Soil Biol. Biochem. 55:78–84CrossRefGoogle Scholar
  10. 10.
    Shaver GR, Giblin AE, Nadelhoffer KJ, Thieler KK, Downs MR, Laundre JA, Rastetter EB (2006) Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature. moisture and fertilizer. J Ecol 94:740–753Google Scholar
  11. 11.
    Stark S, Männistö MK, Eskelinen A (2014) Nutrient availability and pH jointly constrain microbial extracellular enzyme activities in nutrient-poor tundra soils. Plant Soil 383:373–385CrossRefGoogle Scholar
  12. 12.
    Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361CrossRefGoogle Scholar
  13. 13.
    Hartley IP, Ineson P (2008) Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biol. Biochem. 40:1567–1574CrossRefGoogle Scholar
  14. 14.
    Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA (2008) Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol. Lett. 11:1092–1100CrossRefGoogle Scholar
  15. 15.
    Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173CrossRefGoogle Scholar
  16. 16.
    Wei H, Guenet B, Vicca S, Nunan N, AbdElgawad H, Pouteau V, Shen W, Janssens IA (2014) Thermal acclimation of organic matter decomposition in an artificial forest soil is related to shifts in microbial community structure. Soil Biol. Biochem. 71:1–12CrossRefGoogle Scholar
  17. 17.
    Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA (2009) No evidence for compensatory thermal adaptation of soil microbial respiration in the study of Bradford et al. (2008). Ecol. Lett. 12:E12–E14CrossRefGoogle Scholar
  18. 18.
    Tucker CL, Bell J, Pendall E, Ogle K (2013) Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob Change Biol 19:252–263CrossRefGoogle Scholar
  19. 19.
    Burns RG, Deforest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol. Biochem. 58:216–234CrossRefGoogle Scholar
  20. 20.
    Auffret MD, Karhu K, Khachane A, Dungait JAJ, Fraser F, Hopkins DW, Wookey PA, Singh BK, Freitag TE, Hartley IP, Prosser JI (2016) The role of microbial community composition in controlling soil respiration responses to temperature. PLoS One 11(10):e0165448CrossRefGoogle Scholar
  21. 21.
    Wallenstein MD, Hall EK (2012) A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry 109:35–47CrossRefGoogle Scholar
  22. 22.
    Vancampenhout K, Wouters K, De Vos B, Buurman P, Swennen R, Deckers J (2009) Differences in chemical composition of soil organic matter in natural ecosystems from different climate regions—a pyrolysis-GC/MS study. Soil Biol. Biochem. 41:568–579CrossRefGoogle Scholar
  23. 23.
    Sinsabaugh RL, Follstad Shah JJ (2011) Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse. Biogeochemistry 102:31–43CrossRefGoogle Scholar
  24. 24.
    Sjögersten S, Turner BL, Mahieu N, Condron LM, Wookey PA (2003) Soil organic matter biochemistry and potential susceptibility to climatic change across the forest–tundra ecotone in the Fennoscandian mountains. Glob Change Biol 9:759–772CrossRefGoogle Scholar
  25. 25.
    Makoto K, Klaminder J (2012) The influence of non-sorted circles on species diversity of vascular plants, bryophytes and lichens in sub-Arctic tundra. Polar Biol. 35:1659–1667CrossRefGoogle Scholar
  26. 26.
    Krab EJ, Rönnefarth J, Becher M, Blume-Werry G, Keuper F, Klaminder J, Kreyling J, Makoto K, Milbau A, Dorrepaal E (2018) Winter warming effects on tundra shrub performance are species-specific and dependent on spring conditions. J. Ecol. 106:599–612CrossRefGoogle Scholar
  27. 27.
    White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62CrossRefGoogle Scholar
  28. 28.
    Gavazov K, Hagedorn F, Buttler A, Siegwolf R, Bragazza L (2016) Environmental drivers of carbon and nitrogen isotopic signatures in peatland vascular plants along an altitude gradient. Oecologia 180:257–264CrossRefGoogle Scholar
  29. 29.
    Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fert Soil 22:59–65CrossRefGoogle Scholar
  30. 30.
    Olsson PA, Bååth E, Jakobsen I, Söderström B (1995) The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol. Res. 99:623–629CrossRefGoogle Scholar
  31. 31.
    Ruess L, Chamberlain PM (2010) The fat that matters: soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol. Biochem. 42:1898–1910CrossRefGoogle Scholar
  32. 32.
    Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fert Soil 29:111–129CrossRefGoogle Scholar
  33. 33.
    Creamer CA, de Menezes AB, Krull ES, Sanderman J, Newton-Walters R, Farrell M (2015) Microbial community structure mediates response of soil C decomposition to litter addition and warming. Soil Biol. Biochem. 80:175–188CrossRefGoogle Scholar
  34. 34.
    Criquet S, Tagger S, Vogt G, Iacazio G, Le Petit J (1999) Laccase activity of forest litter. Soil Biol. Biochem. 31:1239–1244CrossRefGoogle Scholar
  35. 35.
    Boerner REJ, Decker KLM, Sutherland E (2000) Prescribed burning effects on soil enzyme activity in a southern Ohio hardwood forest: a landscape-scale analysis. Soil Biol. Biochem. 32:899–908CrossRefGoogle Scholar
  36. 36.
    Stark S, Väisänen M (2014) Insensitivity of soil microbial activity to temporal variation in soil N in subarctic tundra: evidence from responses to large migratory grazers. Ecosystems 17:906–917CrossRefGoogle Scholar
  37. 37.
    Weedon JT, Aerts R, Kowalchuk GA, van Bodegom PM (2014) No effects of experimental warming but contrasting seasonal patterns for soil peptidase and glycosidase enzymes in a sub-arctic peat bog. Biogeochemistry 117:55–66CrossRefGoogle Scholar
  38. 38.
    Weedon JT, Kowalchuk GA, Aerts R, van Hal J, van Logtestijn R, Tas N, Röling WFM, van Bodegom PM (2012) Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Glob Change Biol 18:138–150CrossRefGoogle Scholar
  39. 39.
    Sistla SA, Schimel JP (2013) Seasonal patterns of microbial extracellular enzyme activities in an arctic tundra soil: identifying direct and indirect effects of long-term summer warming. Soil Biol. Biochem. 66:119–129CrossRefGoogle Scholar
  40. 40.
    Steinweg JM, Jagadamma S, Frerichs J, Mayes MA (2013) Activation energy of extracellular enzymes in soils from different biomes. PLoS One 8(3):e59943CrossRefGoogle Scholar
  41. 41.
    Hernandez DL, Hobbie SE (2010) The effects of substrate composition, quantity, and diversity on microbial activity. Plant Soil 335:397–411CrossRefGoogle Scholar
  42. 42.
    Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 42:391–404CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication June/2018

Authors and Affiliations

  • Maria Väisänen
    • 1
    • 2
    Email author
  • Konstantin Gavazov
    • 1
    • 3
  • Eveline J. Krab
    • 1
    • 4
  • Ellen Dorrepaal
    • 1
  1. 1.Climate Impacts Research Center, EMGUmeå UniversityAbiskoSweden
  2. 2.Arctic Centre, University of LaplandRovaniemiFinland
  3. 3.Swiss Federal Institute for Forest, Snow and Landscape Research WSLLausanneSwitzerland
  4. 4.Department of Soil and EnvironmentSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations