Kiers ET, Denison RF (2008) Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annu Rev Ecol Evol Syst 39:215–236. https://doi.org/10.1146/annurev.ecolsys.39.110707.173423
Article
Google Scholar
Sprent J, Ardley J, James E (2013) From North to South: a latitudinal look at legume nodulation processes. S Afr J Bot 89:31–41. https://doi.org/10.1016/j.sajb.2013.06.011
Article
Google Scholar
The current taxonomy of rhizobia. NZ Rhizobia website. http://www.rhizobia.co.nz/taxonomy/rhizobia Last updated: X Jan, 2016. [Accessed on 20th of Jan, 2016]. (2016). Accessed 12/06/2015
Thrall PH, Slattery JF, Broadhurst LM, Bickford S (2007) Geographic patterns of symbiont abundance and adaptation in native Australian Acacia–rhizobia interactions. J Ecol 95(5):1110–1122. https://doi.org/10.1111/j.1365-2745.2007.01278.x
Article
Google Scholar
Thrall PH, Burdon JJ, Woods MJ (2000) Variation in the effectiveness of symbiotic associations between native rhizobia and temperate Australian legumes: interactions within and between genera. J Appl Ecol 37(1):52–65. https://doi.org/10.1046/j.1365-2664.2000.00470.x
Article
Google Scholar
Sherry SP (1971) The Black Wattle (Acacia mearnsii De Wild.). University of Natal Press, Pietermaritzburg
Boddey R, De Oliveira O, Urquiaga S, Reis V, De Olivares F, Baldani V, Döbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174. https://doi.org/10.1007/978-94-011-0053-3_9
Chapter
Google Scholar
Heath KD, Tiffin P (2007) Context dependence in the coevolution of plant and rhizobial mutualists. Proc R Soc B: Biol Sc 274(1620):1905–1912. https://doi.org/10.1098/rspb.2007.0495
Article
Google Scholar
Weese DJ, Heath KD, Dentinger BTM, Lau JA (2015) Long-term nitrogen addition causes the evolution of less-cooperative mutualists. Evolution 69(3):631–642. https://doi.org/10.1111/evo.12594
CAS
Article
PubMed
Google Scholar
Simonsen AK, Han S, Rekret P, Rentschler CS, Heath KD, Stinchcombe JR (2015) Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria. PeerJ 3:e1291. https://doi.org/10.7717/peerj.1291
CAS
Article
PubMed
PubMed Central
Google Scholar
VanInsberghe D, Maas KR, Cardenas E, Strachan CR, Hallam SJ, Mohn WW (2015) Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils. ISME J 9(11):2435–2441. https://doi.org/10.1038/ismej.2015.54
CAS
Article
PubMed
PubMed Central
Google Scholar
Hollowell A, Regus J, Gano K, Bantay R, Centeno D, Pham J, Lyu J, Moore D, Bernardo A, Lopez G (2016) Epidemic spread of symbiotic and non-symbiotic Bradyrhizobium genotypes across California. Microb Ecol 71(3):700–710. https://doi.org/10.1007/s00248-015-0685-5
CAS
Article
PubMed
Google Scholar
Neuhauser C, Fargione JE (2004) A mutualism-parasitism continuum model and its application to plant-mycorrhizae interactions. Ecol Model 177(3–4):337–352. https://doi.org/10.1016/j.ecolmodel.2004.02.010
Article
Google Scholar
Van Cauwenberghe J, Michiels J, Honnay O (2015) Effects of local environmental variables and geographical location on the genetic diversity and composition of Rhizobium leguminosarum nodulating Vicia cracca populations. Soil Biol Biochem 90:71–79. https://doi.org/10.1016/j.soilbio.2015.08.001
CAS
Article
Google Scholar
Denison RF, Kiers ET (2004) Lifestyle alternatives for rhizobia: mutualism, parasitism, and forgoing symbiosis. FEMS Microbiol Ecol 237(2):187–193. https://doi.org/10.1111/j.1574-6968.2004.tb09695.x
CAS
Article
Google Scholar
Barrett LG, Bever JD, Bissett A, Thrall PH (2015) Partner diversity and identity impacts on plant productivity in Acacia–rhizobial interactions. J Ecol 103(1):130–142. https://doi.org/10.1111/1365-2745.12336
Article
Google Scholar
Ferreira TC, Aguilar JV, Souza LA, Justino GC, Aguiar LF, Camargos LS (2016) pH effects on nodulation and biological nitrogen fixation in Calopogonium mucunoides. Braz J Bot 39(4):1015–1020. https://doi.org/10.1007/s40415-016-0300-0
Article
Google Scholar
Slattery JF, Coventry DR (1993) Variation of soil populations of Rhizobium leguminosarum bv. Trifolii and the occurrence of inoculant rhizobia in nodules of subterranean clover after pasture renovation in north-eastern Victoria. Soil Biol Biochem 25(12):1725–1730. https://doi.org/10.1016/0038-0717(93)90176-C
Article
Google Scholar
Vuong HB, Thrall PH, Barrett LG (2016) Host species and environmental variation can influence rhizobial community composition. J Ecol 105:540–548. https://doi.org/10.1111/1365-2745.12687
CAS
Article
Google Scholar
Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98(4):725–736. https://doi.org/10.1111/j.1365-2745.2010.01664.x
Article
Google Scholar
Krüger M, Teste FP, Laliberté E, Lambers H, Coghlan M, Zemunik G, Bunce M (2015) The rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogression. Mol Ecol 24(19):4912–4930. https://doi.org/10.1111/mec.13363
Article
PubMed
Google Scholar
Dickie IA, Martínez-García LB, Koele N, Grelet G-A, Tylianakis JM, Peltzer DA, Richardson SJ (2013) Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant Soil 367(1–2):11–39. https://doi.org/10.1007/s11104-013-1609-0
CAS
Article
Google Scholar
Albornoz FE, Lambers H, Turner BL, Teste FP, Laliberté E (2016) Shifts in symbiotic associations in plants capable of forming 2 multiple root symbioses across a long-term soil chronosequence. Ecol Evol 6(8):2368–2377. https://doi.org/10.1002/ece3.2000
Article
PubMed
PubMed Central
Google Scholar
Turner BL, Laliberté E (2015) Soil development and nutrient availability along a 2 million-year coastal dune chronosequence under species-rich Mediterranean shrubland in Southwestern Australia. Ecosystems 18(2):287–309. https://doi.org/10.1007/s10021-014-9830-0
CAS
Article
Google Scholar
Vitousek PM (2004) Nutrient cycling and limitation: Hawai’i as a model system. Princeton University Press, USA
Google Scholar
Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995) Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecol 76(5):1407–1424. https://doi.org/10.2307/1938144
Article
Google Scholar
Peltzer DA, Wardle DA, Allison VJ, Baisden WT, Bardgett RD, Chadwick OA, Condron LM, Parfitt RL, Porder S, Richardson SJ, Turner BL, Vitousek PM, Walker J, Walker LR (2010) Understanding ecosystem retrogression. Ecol Monogr 80(4):509–529. https://doi.org/10.1890/09-1552.1
Article
Google Scholar
Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2015) Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205(4):1525–1536. https://doi.org/10.1111/nph.13208
CAS
Article
PubMed
Google Scholar
Martínez-García LB, Richardson SJ, Tylianakis JM, Peltzer DA, Dickie IA (2015) Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytol 205(4):1565–1576. https://doi.org/10.1111/nph.13226
CAS
Article
PubMed
Google Scholar
Laliberté E, Turner BL, Costes T, Pearse SJ, Wyrwoll KH, Zemunik G, Lambers H (2012) Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot. J Ecol 100(3):631–642. https://doi.org/10.1111/j.1365-2745.2012.01962.x
CAS
Article
Google Scholar
McArthur, WM & Bettenay, E (1974) Development and Distribution of Soils of the Swan Coastal Plain, Western Australia. CSIRO, Australia.
Odum EP (1969) The strategy of ecosystem development. In: Ndubisi FO (ed) The ecological design and planning reader. Island Press/Center for Resource Economics, Washington, DC, pp 203–216. doi:https://doi.org/10.5822/978-1-61091-491-8_20
Chapter
Google Scholar
Vitousek PM, Farrington H (1997) Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochem 37(1):63–75. https://doi.org/10.1023/A:1005757218475
CAS
Article
Google Scholar
Kitayama K, Mueller-Dombois D (1995) Vegetation changes along gradients of long-term soil development in the Hawaiian montane rainforest zone. Plant Ecol 120(1):1–20. https://doi.org/10.1007/BF00033454
Article
Google Scholar
Richardson SJ, Peltzer DA, Allen RB, McGlone MS, Parfitt RL (2004) Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia 139(2):267–276. https://doi.org/10.1007/s00442-004-1501-y
Article
PubMed
Google Scholar
Laliberté E, Zemunik G, Turner BL (2014) Environmental filtering explains variation in plant diversity along resource gradients. Science 345(6204):1602–1605. https://doi.org/10.1126/science.1256330
CAS
Article
PubMed
Google Scholar
Zemunik G, Turner BL, Lambers H, Laliberté E (2016) Increasing plant species diversity and extreme species turnover accompany declining soil fertility along a long-term chronosequence in a biodiversity hotspot. J Ecol 104(3):792–805. https://doi.org/10.1111/1365-2745.12546
Article
Google Scholar
Albornoz FE, Teste FP, Lambers H, Bunce M, Murray DC, White NE, Laliberté E (2016) Changes in ectomycorrhizal fungal community composition and declining diversity along a 2-million year soil chronosequence. Mol Ecol 25(19):4919–4929. https://doi.org/10.1111/mec.13778
CAS
Article
PubMed
Google Scholar
Raven JA (2012) Protein turnover and plant RNA and phosphorus requirements in relation to nitrogen fixation. Plant Sc 188:25–35. https://doi.org/10.1016/j.plantsci.2012.02.010
CAS
Article
Google Scholar
Sprent JI, Raven JA (1985) Evolution of nitrogen-fixing symbioses. Proc R Soc Edinb B Biol Sci 85(3–4):215–237. https://doi.org/10.1017/S0269727000004036
Article
Google Scholar
Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5(7):539–554. https://doi.org/10.1046/j.1462-2920.2003.00451.x
CAS
Article
PubMed
Google Scholar
Gaby JC, Buckley DH (2011) A global census of nitrogenase diversity. Environ Microbiol 13(7):1790–1799. https://doi.org/10.1111/j.1462-2920.2011.02488.x
CAS
Article
PubMed
Google Scholar
Groves RH (ed) (1994) Australian vegetation2nd edn. Melbourne, Cambridge University Press
Google Scholar
Thrall PH, Bever JD, Slattery JF (2008) Rhizobial mediation of Acacia adaptation to soil salinity: evidence of underlying trade-offs and tests of expected patterns. J Ecol 96(4):746–755. https://doi.org/10.1111/j.1365-2745.2008.01381.x
Article
Google Scholar
Graham PH (1992) Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can J Microbiol 38(6):475–484. https://doi.org/10.1139/m92-079
CAS
Article
Google Scholar
Lowendorf HS, Alexander M (1983) Identification of Rhizobium phaseoli strains that are tolerant or sensitive to soil acidity. Appl Environ Microbiol 45(3):737–742
CAS
PubMed
PubMed Central
Google Scholar
McArthur WM, Bettenay E (1960) The development and distribution of the soils of the Swan Coastal Plain, Western Australia. Soil Publication CSIRO, Australia 16
Zemunik G, Turner BL, Lambers H, Laliberté E (2015) Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nature Plants 1(5):15050. https://doi.org/10.1038/nplants.2015.50
CAS
Article
Google Scholar
Enright NJ, Lamont BB, Miller BP (2005) Anomalies in grasstree fire history reconstructions for south-western Australian vegetation. Austral Ecol 30(6):668–673. https://doi.org/10.1111/j.1442-9993.2005.01509.x
Article
Google Scholar
Enright NJ, Fontaine JB, Lamont BB, Miller BP, Westcott VC (2014) Resistance and resilience to changing climate and fire regime depend on plant functional traits. J Ecol 102(6):1572–1581
Article
Google Scholar
Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterisation of root nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across southeastern Australia. Int J Syst Evol Microbiol 61:299–309. https://doi.org/10.1099/ijs.0.021014-0
CAS
Article
PubMed
Google Scholar
Birnbaum C, Bissett A, Thrall PH, Leishman MR (2016) Nitrogen-fixing bacterial communities in invasive legume nodules and associated soils are similar across introduced and native range populations in Australia. J Biogeogr 43(8):1631–1644. https://doi.org/10.1111/jbi.12752
Article
Google Scholar
Hill Y (2015) Investigation of the symbiotic associations of Acacia ligulata Benth. and Acacia tetragonophylla F.Muell: the potential for use in the rehabilitation of excavated sites at Shark Bay Salt Pty. Ltd. PhD Thesis. Murdoch University, Perth, PerthAustralia
Hayes P, Turner BL, Lambers H, Laliberté E (2014) Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J Ecol 102(2):396–410. https://doi.org/10.1111/1365-2745.12196
CAS
Article
Google Scholar
Zehr JP, McReynolds LA (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55(10):2522–2526
CAS
PubMed
PubMed Central
Google Scholar
Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507
CAS
Article
PubMed
PubMed Central
Google Scholar
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998. https://doi.org/10.1038/nmeth.2604
CAS
Article
PubMed
Google Scholar
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. https://doi.org/10.1093/bioinformatics/btq461
CAS
Article
Google Scholar
McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217
CAS
Article
Google Scholar
Gaby JC, Buckley DH (2014) A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database 2014:bau001
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32(4):1363–1371. https://doi.org/10.1093/nar/gkh293
CAS
Article
PubMed
PubMed Central
Google Scholar
Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26(1):32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
Article
Google Scholar
Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York
Book
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Peter Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) Vegan: community ecology package. R package version 2:4–3 http://CRAN.R-project.org/package=vegan
Google Scholar
Cáceres MD, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90(12):3566–3574. https://doi.org/10.1890/08-1823.1
Article
PubMed
Google Scholar
Venables WN, Ripley BD (2002) Modern applied statistics with SFourth edn. Springer, New York
Book
Google Scholar
Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York
Book
Google Scholar
Hope RM (2013) Rmisc: Ryan miscellaneous. R package version 1:5
Google Scholar
Navarro DJ (2015) Learning statistics with R: a tutorial for psychology students and other beginners. (Version 0.5). University of Adelaide, Adelaide, Australia
Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution, vol 1. Blackwell Press, Oxford
Google Scholar
Chen CR, Hou EQ, Condron LM, Bacon G, Esfandbod M, Olley J, Turner BL (2015) Soil phosphorus fractionation and nutrient dynamics along the Cooloola coastal dune chronosequence, southern Queensland, Australia. Geoderma 257-258(supplement C):4–13. https://doi.org/10.1016/j.geoderma.2015.04.027
CAS
Article
Google Scholar
Png GK, Turner BL, Albornoz FE, Hayes PE, Lambers H, Laliberté E (2017) Greater root phosphatase activity in nitrogen-fixing rhizobial but not actinorhizal plants with declining phosphorus availability. J Ecol n/a:n/a 105:1246–1255. https://doi.org/10.1111/1365-2745.12758
CAS
Article
Google Scholar
Krasova-Wade T, Diouf O, Ndoye I, Sall CE, Braconnier S, Neyra M (2006) Water-condition effects on rhizobia competition for cowpea nodule occupancy. Afr J Biotechnol 5(16):1457–1463
CAS
Google Scholar
Brockwell J, Pilka A, Holliday R (1991) Soil pH is a major determinant of the numbers of naturally occurring Rhizobium meliloti in non-cultivated soils in central New South Wales. Austr J Exp Agr 31(2):211–219. https://doi.org/10.1071/EA9910211
Article
Google Scholar
West S, Kiers ET, Pen I, Denison R (2002) Sanctions and mutualism stability: when should less beneficial mutualists be tolerated? J Evol Biol 15(5):830–837. https://doi.org/10.1046/j.1420-9101.2002.00441.x
Article
Google Scholar
Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Ann Rev Ecol System 19:207–233. https://doi.org/10.1146/annurev.es.19.110188.001231
Article
Google Scholar
Cooper VS, Lenski RE (2000) The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407(6805):736–739. https://doi.org/10.1038/35037572
CAS
Article
PubMed
Google Scholar
Vinuesa P, Neumann-Silkow F, Pacios-Bras C, Spaink HP, Martínez-Romero E, Werner D (2003) Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness. Mol plant-microbe inter 16(2):159–168. https://doi.org/10.1094/MPMI.2003.16.2.159
CAS
Article
Google Scholar
Martyniuk S, Oron J, Martyniuk M (2005) Diversity and numbers of root-nodule bacteria [rhizobia] in Polish soils. Acta Soc Bot Pol 74(1):83–86
Article
Google Scholar
Wielbo J, Kidaj D, Koper P, Kubik-Komar A, Skorupska A (2012) The effect of biotic and physical factors on the competitive ability of Rhizobium leguminosarum. Open Life Sci 7(1):13–24
CAS
Google Scholar
Provorov NA, Vorobyov NI (2006) Interplay of Darwinian and frequency-dependent selection in the host-associated microbial populations. Theor Pop Biol 70(3):262–272. https://doi.org/10.1016/j.tpb.2006.06.002
Article
Google Scholar
Sachs J, Kembel S, Lau A, Simms E (2009) In situ phylogenetic structure and diversity of wild Bradyrhizobium communities. Appl Environ Microbiol 75(14):4727–4735
CAS
Article
Google Scholar
Turk D, Keyser HH (1992) Rhizobia that nodulate tree legumes: specificity of the host for nodulation and effectiveness. Can J Microbiol 38(6):451–460. https://doi.org/10.1139/m92-076
Article
Google Scholar
Lodeiro AR, Favelukes G (1999) Early interactions of Bradyrhizobium japonicum and soybean roots: specificity in the process of adsorption. Soil Biol Biochem 31(10):1405–1411. https://doi.org/10.1016/S0038-0717(99)00058-9
CAS
Article
Google Scholar
Lieven-Antoniou C, Whittam T (1997) Specificity in the symbiotic association of Lotus corniculatus and Rhizobium loti from natural populations. Mol Ecol 6(7):629–639. https://doi.org/10.1046/j.1365-294X.1997.00224.x
CAS
Article
Google Scholar
Walker T, Syers J (1976) The fate of phosphorus during pedogenesis. Geoderma 15(1):1–19. https://doi.org/10.1016/0016-7061(76)90066-5
CAS
Article
Google Scholar
Batterman SA, Wurzburger N, Hedin LO (2013) Nitrogen and phosphorus interact to control tropical symbiotic N2 fixation: a test in Inga punctata. J Ecol 101(6):1400–1408. https://doi.org/10.1111/1365-2745.12138
CAS
Article
Google Scholar