Advertisement

Microbial Ecology

, Volume 76, Issue 4, pp 1063–1074 | Cite as

Effects of Lactogen 13, a New Probiotic Preparation, on Gut Microbiota and Endocrine Signals Controlling Growth and Appetite of Oreochromis niloticus Juveniles

  • Gioacchini Giorgia
  • Ciani Elia
  • Pessina Andrea
  • Cecchini Cinzia
  • Silvi Stefania
  • Rodiles Ana
  • Merrifield L. Daniel
  • Olivotto Ike
  • Carnevali Oliana
Host Microbe Interactions

Abstract

In the present study, Nile tilapia Oreochromis niloticus was used as experimental model to study the molecular effects of a new probiotic preparation, Lactogen 13 (Lactobacillus rhamnosus IMC 501® encapsulated with vegetable fat matrices by spray chilling and further indicated as probiotic microgranules), on growth and appetite during larval development. Probiotic microgranules were administered for 30 days to tilapia larvae starting from first feeding. Molecular analysis using high-throughput sequencing revealed that the probiotic could populate the gastrointestinal tract and modulate the microbial communities by significantly increasing the proportion of Lactobacillus as well as reducing the proportion of potential pathogens such as members of the Family Microbacteriaceae, Legionellaceae, and Weeksellaceae. Morphometric analysis evidenced that body weight and total length significantly increased after probiotic treatment. This increase coincided with the modulation of genes belonging to the insulin-like growth factors (igfs) system and genes involved on myogenesis, such as myogenin, and myogenic differentiation (myod). Alongside the improvement of growth, an increase of feed intake was evidenced at 40 days post-fertilization (dpf) in treated larvae. Gene codifying for signals belonging to the most prominent systems involved in appetite regulation, such as neuropeptide y (npy), agouti-related protein (agrp), leptin, and ghrelin were significantly modulated. These results support the hypothesis that gastrointestinal (GI) microbiota changes due to probiotic administration modulate growth and appetite control, activating the endocrine system of tilapia larvae.

Keywords

Probiotic Microbiome IGF Leptin Ghrelin 

Notes

Acknowledgements

The authors thank Prof. A. Cresci (Synbiotec Srl, Camerino, Italy) and Dr. L. Bortolotto (Sintal Srl, Isola Vicentina Italy), who kindly provided expertise, probiotic strain, and facilities to produce the prototype of Lactogen 13. This study was supported by Mi.S.E. N. 2201 to Oliana Carnevali.

Compliance with Ethical Standards

Conflict of Interest

All authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

References

  1. 1.
    Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD et al (2017) Expert consensus document: the international scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Review of Gastroenterology and Hepatology 14:491–502Google Scholar
  2. 2.
    Dimitroglou A, Merrifield DL, Carnevali O, Picchietti S, Avella M, Daniels C, Güroy D, Davies SJ (2011) Microbial manipulations to improve fish health and production—a Mediterranean perspective. Fish Shellfish Immunol 30:1–16CrossRefGoogle Scholar
  3. 3.
    Maradonna F, Gioacchini G, Falcinelli S, Bertotto D, Radaelli G, Olivotto I, Carnevali O (2013) Probiotic supplementation promotes calcification in Danio rerio larvae: a molecular study. PLoS One 8:e83155CrossRefGoogle Scholar
  4. 4.
    Gioacchini G, Giorgini E, Olivotto I, Maradonna F, Merrifield DL, Carnevali O (2014) The influence of probiotics on zebrafish danio Rerio innate immunity and hepatic stress. Zebrafish 11:98–106CrossRefGoogle Scholar
  5. 5.
    Srisapoome P, Areechon N (2017) Efficacy of viable Bacillus pumilus isolated from farmed fish on immune responses and increased disease resistance in Nile tilapia (Oreochromis niloticus): laboratory and on-farm trials. Fish Shellfish Immunol 67:199–210CrossRefGoogle Scholar
  6. 6.
    Hai NV (2015) Research findings from the use of probiotics in tilapia aquaculture: a review. Fish Shellfish Immunol 45:592–597CrossRefGoogle Scholar
  7. 7.
    Yamashita MM, Pereira SA, Cardoso L, de Araujo AP, Oda CE, Schmidt ÉC, Bouzon ZL, Martins M, Mouriño JLP (2017) Probiotic dietary supplementation in Nile tilapia as prophylaxis against streptococcosis. Aquac. Nutr. 23:1235–1243CrossRefGoogle Scholar
  8. 8.
    Ramos MA, Batista S, Pires MA, Silva AP, Pereira LF, Saavedra MJ, Ozório ROA, Rema P (2017) Dietary probiotic supplementation improves growth and the intestinal morphology of Nile tilapia. Animal 11:1259–1269CrossRefGoogle Scholar
  9. 9.
    Addo S, Carrias AA, Williams MA, Liles MR, Terhune JS, Davis DA (2017) Effects of Bacillus subtilis strains and the prebiotic Previda on growth, immune parameters and susceptibility to Aeromonas hydrophila infection in Nile tilapia, Oreochromis niloticus. Aquac. Res. 48:4798–4810CrossRefGoogle Scholar
  10. 10.
    Falcinelli S, Rodiles A, Unniappan S, Picchietti S, Gioacchini G, Merrifield DL, Carnevali O (2016) Probiotic treatment reduces appetite and glucose level in the zebrafish model. Sci. Rep. 6:18061–18061CrossRefGoogle Scholar
  11. 11.
    Gioacchini G, Maradonna F, Lombardo F, Bizzaro D, Olivotto I, Carnevali O (2010) Increase of fecundity by probiotic administration in zebrafish (Danio rerio). Reproduction 140:953–959CrossRefGoogle Scholar
  12. 12.
    Carnevali O, Avella MA, Gioacchini G (2013) Effects of probiotic administration on zebrafish development and reproduction. Gen. Comp. Endocrinol. 188:297–302CrossRefGoogle Scholar
  13. 13.
    Moloney RD, Desbonnet L, Clarke G, Dinan TG, Cryan JF (2014) The microbiome: stress, health and disease. Mamm. Genome 25:49–74CrossRefGoogle Scholar
  14. 14.
    Gioacchini G, Rossi G, Carnevali O (2017) Host-probiotic interaction: new insight into the role of the endocannabinoid system by in vivo and ex vivo approaches. Sci. Rep. 7:1261CrossRefGoogle Scholar
  15. 15.
    Murphy KG, Bloom SR (2006) Gut hormones and the regulation of energy homeostasis. Nature 444:854–859CrossRefGoogle Scholar
  16. 16.
    Delzenne NM, Neyrinck AM, Bäckhed F, Cani PD (2011) Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 7:639–646CrossRefGoogle Scholar
  17. 17.
    Bercik P, Collins SM, Verdu EF (2012) Microbes and the gut–brain axis. Neurogastroenterol. Motil. 24:405–413CrossRefGoogle Scholar
  18. 18.
    Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behaviour. Proc. Natl. Acad. Sci. U. S. A. 108:3047–3052CrossRefGoogle Scholar
  19. 19.
    Vadstein O, Bergh O, Gatesoupe F-J, Galindo-Villegas J, Mulero V, Picchietti S, Scapigliati G, Makridis P, Olsen Y, Dierckens K, Defoirdt T, Boon N, de Schryver P, Bossier P (2013) Microbiology and immunology of fish larvae. Rev Aquacult 5:S1–S25CrossRefGoogle Scholar
  20. 20.
    Geurden I, Mennigen J, Plagnes-Juan E, Veron V, Cerezo T, Mazurais D, Zambonino-Infante J, Gatesoupe J, Skiba-Cassy S, Panserat S (2014) High or low dietary carbohydrate: protein ratios during first-feeding affect glucose metabolism and intestinal microbiota in juvenile rainbow trout. J. Exp. Biol. 217:3396–3406CrossRefGoogle Scholar
  21. 21.
    Rocha F, Dias J, Geurden I, Dinis MT, Panserat S, Engrola S (2016) Dietary glucose stimulus at larval stage modifies the carbohydrate metabolic pathway in gilthead seabream (Sparus aurata) juveniles: an in vivo approach using C-14-starch. Comp Biochem Physiol A Mol Integr Physiol 201:189–199CrossRefGoogle Scholar
  22. 22.
    Avella MA, Olivotto I, Silvi S, Place AR, Carnevali O (2010) Effect of dietary probiotics on clownfish: a molecular approach to define how lactic acid bacteria modulate development in a marine fish. Am J Physiol-Reg I 298:R359–R371Google Scholar
  23. 23.
    Verdenelli MC, Ghelfi F, Silvi S, Orpianesi C, Cecchini C, Cresci A (2009) Probiotic properties of Lactobacillus rhamnosus and Lactobacillus paracasei isolated from human faeces. Eur. J. Nutr. 48:355–363CrossRefGoogle Scholar
  24. 24.
    Deng SX, Tian LX, Liu FJ, Jin SJ, Liang GY, Yang H, Du Z-Y, Liu Y-J (2010) Toxic effects and residue of aflatoxin B1 in tilapia (Oreochromis niloticus x O. aureus) during long-term dietary exposure. Aquaculture 307:233–240CrossRefGoogle Scholar
  25. 25.
    Guyon R, Rakotomanga M, Azzouzi N, Coutanceau JP Bonillo C, D'Cotta H, Pepey E, Soler L, Rodier-Goud M, D'Hont A et al (2012) A high-resolution map of the Nile tilapia genome: a resource for studying cichlids and other percomorphs. BMC Genomics 13:222CrossRefGoogle Scholar
  26. 26.
    Cecchini C, Verdenelli MC, Palmieri GF, Silvi S (2010) Evaluation of microgranulation of Lactobacillus rhamnosus IMC 501® and Lactobacillus paracasei IMC 502® with vegetable fats as an approach to prolonging viability during storage. J. Biotechnol. 21:28–31Google Scholar
  27. 27.
    Ogbonna CC, Cecchini C, Silvi S, Verdenelli MC, Coman MM, Orpianesi C, Cresci A (2011) Enhancing Italian traditional foods through the enrichment of functional ingredients. Agro Food Industry Hi-Tech 22:34–37Google Scholar
  28. 28.
    Han B, Long W, He J, Liu Y, Si Y, Tian L (2015) Effects of dietary Bacillus licheniformis on growth performance, immunological parameters, intestinal morphology and resistance of juvenile Nile tilapia (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol 46:225e231CrossRefGoogle Scholar
  29. 29.
    Piccinetti CC, Migliarini B, Olivotto I, Coletti G, Amici A, Carnevali O (2010) Appetite regulation: the central role of melatonin in Danio rerio. Horm. Behav. 58:780–785CrossRefGoogle Scholar
  30. 30.
    Falcinelli S, Picchietti S, Rodiles A, Cossignani L, Merrifield DL, Taddei AR, Maradonna F, Olivotto I, Gioacchini G, Carnevali O (2015) Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism. Sci. Rep. 5:9336CrossRefGoogle Scholar
  31. 31.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010a) QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–336CrossRefGoogle Scholar
  32. 32.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefGoogle Scholar
  33. 33.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72:5069–5072CrossRefGoogle Scholar
  34. 34.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261–5267CrossRefGoogle Scholar
  35. 35.
    Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010b) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267CrossRefGoogle Scholar
  36. 36.
    Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative b diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73:1576–1585CrossRefGoogle Scholar
  37. 37.
    Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27:325–349CrossRefGoogle Scholar
  38. 38.
    Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64:5245–5250CrossRefGoogle Scholar
  39. 39.
    Giatsis C, Sipkema D, Smidt H, Heilig H, Benvenuti G, Verreth J, Verdegem M (2015) The impact of rearing environment on the development of gut microbiota in tilapia larvae. Sci. Rep. 5:18206CrossRefGoogle Scholar
  40. 40.
    Standen BT, Rodiles A, Peggs DL, Davies SJ, Santos GA, Merrifield DL (2015) Modulation of the intestinal microbiota and morphology of tilapia, Oreochromis niloticus, following the application of a multi-species probiotic. Appl. Microbiol. Biotechnol. 99:8403–8417CrossRefGoogle Scholar
  41. 41.
    Adeoye AA, Yomla R, Jaramillo-Torres A, Rodiles A, Merrifield DL, Davies SJ (2016) Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiome. Aquaculture 463:61–70CrossRefGoogle Scholar
  42. 42.
    Camilleri M (2015) Peripheral mechanisms in appetite regulation. Gastroenterol 148:1219–1233CrossRefGoogle Scholar
  43. 43.
    Boguszewski CL, van der Lely AJ (2015) The role of the gastrointestinal tract in the control of energy balance. Transl Gastrointest Cancer 4:3–13Google Scholar
  44. 44.
    Volkoff H, Canosa LF, Unniappan S, Cerdá-Reverter JM, Bernier NJ, Kellyf SP, Peter RE (2005) Neuropeptides and the control of food intake in fish. Gen. Comp. Endocrinol. 142:3–19CrossRefGoogle Scholar
  45. 45.
    Holzer P, Reichmann F, Farzi A (2012) Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 46:261–274CrossRefGoogle Scholar
  46. 46.
    Cerda-Reverter JM, Agulleiro MJ, Guillot R, Sanchez E, Ceinos R, Rotllant J (2011) Fish melanocortin system. Eur. J. Pharmacol. 660:53–60CrossRefGoogle Scholar
  47. 47.
    Riley LG, Fox BK, Kaiya H, Hirano T, Grau EG (2005) Long-term treatment of ghrelin stimulates feeding, fat deposition, and alters the GH/IGF-I axis in the tilapia, Oreochromis mossambicus. Gen. Comp. Endocrinol. 142:234–240CrossRefGoogle Scholar
  48. 48.
    Kaiya H, Miyazato M, Kangawa K, Peter RE, Unniappan S (2008) Ghrelin: a multifunctional hormone in non-mammalian vertebrates. Comp Biochem Physiol A Mol Integr Physiol 149:109–128CrossRefGoogle Scholar
  49. 49.
    Won ET, Douros JD, Hurt DA, Borski RJ (2016) Leptin stimulates hepatic growth hormone receptor and insulin-like growth factor gene expression in a teleost fish, the hybrid striped bass. Gen. Comp. Endocrinol. 229:84–91CrossRefGoogle Scholar
  50. 50.
    Bedford M, Cowieson A (2012) Exogenous enzymes and their effects on intestinal microbiology. Anim. Feed Sci. Technol. 173:76–85CrossRefGoogle Scholar
  51. 51.
    Ray A, Ghosh K, Ringø E (2012) Enzyme-producing bacteria isolated from fish gut: a review. Aquac. Nutr. 18:465–492CrossRefGoogle Scholar
  52. 52.
    Velez EJ, Lutfi E, Azizi S, Perello M, Salmeron C, Riera-Codina M, Ibarz J, Fernández-Borràs J, Blasco E, Capilla I et al (2017) Understanding fish muscle growth regulation to optimize aquaculture production. Aquaculture 467:28–40CrossRefGoogle Scholar
  53. 53.
    Watabe S (2001) Myogenic regulatory factors. Fish Physiol 24:19–41CrossRefGoogle Scholar
  54. 54.
    Pownal ME, Gustafsson MK, Emerson CPJ (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryo. Annu Rev Cell Dev Bi 18:747–783CrossRefGoogle Scholar
  55. 55.
    McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C et al (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138:3657–3666CrossRefGoogle Scholar
  56. 56.
    Hinits Y, Osborn DPS, Hughes SM (2009) Differential requirements for myogenic regulatory factors distinguish medial and lateral somitic, cranial and fin muscle fibre populations. Development 136:403–414CrossRefGoogle Scholar
  57. 57.
    Manceau M, Gros J, Savage K, Thomé V, McPherron A, Paterson B, Marcelle C (2008) Myostatin promotes the terminal differentiation of embryonic muscle progenitors. Genes Dev. 22:668–681CrossRefGoogle Scholar
  58. 58.
    Joulia D, Bernardi H, Garandel V, Rabenoelina F, Vernus B, Cabello G (2003) Mechanism involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp. Cell Res. 286:263–275CrossRefGoogle Scholar
  59. 59.
    Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J. Histochem. Cytochem. 54:1177–1191CrossRefGoogle Scholar
  60. 60.
    Fuentes EN, Valdés JA, Molina A, Björnsson BT (2013) Regulation of skeletal muscle growth in fish by the growth hormone—insulin-like growth factor system. Gen. Comp. Endocrinol. 192:136–148CrossRefGoogle Scholar
  61. 61.
    Jiménez-Amilburu V, Salmerón C, Codina M, Navarro I, Capilla E, Gutiérrez J (2013) Insulin-like growth factors effects on the expression of myogenic regulatory factors in gilthead sea bream muscle cells. Gen. Comp. Endocrinol. 188:151–158CrossRefGoogle Scholar
  62. 62.
    Besseau L, Fuentes M, Sauzet S, Beauchaud M, Chatain B, Coves D, Boeuf G, Falcón J (2013) Somatotropic axis genes are expressed before pituitary onset during zebrafish and sea bass development. Gen. Comp. Endocrinol. 94:141Google Scholar
  63. 63.
    Zanou N, Gailly P (2013) Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cell. Mol. Life Sci. 70:4117–4130CrossRefGoogle Scholar
  64. 64.
    Hamdan AM, El-Sayed AFM, Mahmoud MM (2016) Effects of a novel marine probiotic, Lactobacillus plantarum AH 78, on growth performance and immune response of Nile tilapia (Oreochromis niloticus). J. Appl. Microbiol. 120:1061–1073CrossRefGoogle Scholar
  65. 65.
    Lara-Flores M, Olvera-Novoa MA, Guzmán-Méndez BZE, López-madrid W (2003) Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture 216:193–201CrossRefGoogle Scholar
  66. 66.
    Zhou X, Tian Z, Wang Y, Li W (2010) Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish Physiol. Biochem. 36:501–509CrossRefGoogle Scholar
  67. 67.
    Ridha MT, Azad IS (2016) Effect of autochthonous and commercial probiotic bacteria on growth, persistence, immunity and disease resistance in juvenile and adult Nile tilapia Oreochromis niloticus. Aquac. Res. 47:2757–2767CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze della Vita e dell’AmbienteUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Scuola di Bioscienze e Medicina VeterinariaUniversità degli Studi di CamerinoCamerinoItaly
  3. 3.Aquatic Animal Nutrition and Health Research Group, School of Biological and Marine SciencesPlymouth UniversityPlymouthUK

Personalised recommendations