Microbial Ecology

, Volume 76, Issue 3, pp 719–728 | Cite as

Changes in Larval Mosquito Microbiota Reveal Non-target Effects of Insecticide Treatments in Hurricane-Created Habitats

  • Joseph P. Receveur
  • Jennifer L. Pechal
  • M. Eric Benbow
  • Gary Donato
  • Tadhgh Rainey
  • John R. WallaceEmail author
Environmental Microbiology


Ephemeral aquatic habitats and their associated microbial communities (microbiomes) play important roles in the growth and development of numerous aquatic insects, including mosquitoes (Diptera). Biological control agents, such as Bacillus thuringiensis israelensis (Bti) or insect growth regulators (e.g., methoprene), are commonly used to control mosquitoes in these habitats. However, it is unknown how commonly used control compounds affect the mosquito internal microbiome and potentially alter their life history traits. The objectives of this study were threefold: characterize the internal microbiota of Aedes larvae (Culicidae) in ephemeral forested mosquito habitat using high-throughput amplicon based sequencing, assess how mosquito control treatments affect the internal microbial communities of larval mosquitoes, and determine if changes to the microbiome resulted from direct or indirect treatment effects. The larval microbiome varied in community composition and diversity with development stage and treatment, suggesting potential effects of control compounds on insect microbial ecology. While microbial community differences due to Bti treatment were a result of indirect effects on larval development, methoprene had significant impacts on bacterial and algal taxa that could not be explained by indirect treatment effects. These results provide new information on the interactions between pesticide treatments and insect microbial communities.


Microbial ecology Microbe Higher organism interactions Community genomics Non-target effects 



We would like to thank Matthew Silva, Greg Vaccarino, Frank Herr, Ryan Walker, and Jon Rutt for assistance in the field; Courtney Weatherbee for assistance with DNA extraction; and Chris Hardy, Brent Horton, and Sepi Yalda, who served on JRs thesis committee. Funding support for this project was provided by Hunterdon County Vector Control Program (HCVCP) black fly grant no. 6032305751, Commonwealth of Pennsylvania University Biologists (CPUB) Student Research Grant, Neimeyer-Hodgson Student Research Grant, Noonan Endowment award, and William Yurkiewicz Fellowship. We also thank the College of Agriculture and Natural Resources (Department of Entomology) and the College of Osteopathic Medicine (Department of Osteopathic Medical Specialties) for funding this work (MEB).

Supplementary material

248_2018_1175_MOESM1_ESM.docx (12 kb)
Table S1 Samples for gene amplicon sequencing by instar and date. (DOCX 12 kb)
248_2018_1175_MOESM2_ESM.docx (12 kb)
Table S2 Samples for gene amplicon sequencing by treatment and instar (DOCX 12 kb)
248_2018_1175_MOESM3_ESM.docx (13 kb)
Table S3 Most important predictors of treatment group between methoprene and control samples at greater than one day post. (DOCX 13 kb)
248_2018_1175_Fig5_ESM.gif (102 kb)
Figure S1

Principle coordinate analysis by sampling date. (GIF 101 kb)

248_2018_1175_MOESM4_ESM.tiff (733 kb)
High Resolution Image (TIFF 732 kb)
248_2018_1175_Fig6_ESM.gif (1.1 mb)
Figure S2

Locations of sample divots within Teetertown preserve. (GIF 1079 kb)

248_2018_1175_MOESM5_ESM.tif (1.7 mb)
High Resolution Image (TIFF 1787 kb)


  1. 1.
    Banning NC, Gleeson DB, Grigg AH, Grant CD, Andersen GL, Brodie EL, Murphy DV (2011) Soil microbial community successional patterns during Forest ecosystem restoration. Appl Environ Microbiol 77:6158–6164. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hättenschwiler S, Coq S, Barantal S, Handa IT (2011) Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytol. 189:950–965. CrossRefPubMedGoogle Scholar
  3. 3.
    Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050. CrossRefGoogle Scholar
  4. 4.
    Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92. CrossRefPubMedGoogle Scholar
  5. 5.
    Coon KL, Vogel KJ, Brown MR, Strand MR (2014) Mosquitoes rely on their gut microbiota for development. Mol Ecol 23:2727–2739. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Merritt RW, Dadd RH, Walker ED (1992) Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu Rev Entomol 37:349–376. CrossRefPubMedGoogle Scholar
  7. 7.
    Ponnusamy L, Xu N, Nojima S, Wesson DM, Schal C, Apperson CS (2008) Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. Proc Natl Acad Sci U S A 105:9262–9267. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wallace JR, Merritt RW (2004) Diel feeding periodicity of larval Anopheline mosquitoes on microorganisms and Microinvertebrates: a spatial and temporal comparison of Anopheles quadrimaculatus (Diptera: Culicidae) diets in a Michigan pond. J Med Entomol 41:853–860. CrossRefPubMedGoogle Scholar
  9. 9.
    Kaufman MG, Walker ED, Smith TW, Merritt RW, Klug MJ (1999) Effects of larval mosquitoes (Aedes triseriatus) and Stemflow on microbial community dynamics in container habitats. Appl Environ Microbiol 65:2661–2673PubMedPubMedCentralGoogle Scholar
  10. 10.
    Walker ED, Kaufman MG, Merritt RW (2010) An acute trophic cascade among microorganisms in the tree hole ecosystem following removal of omnivorous mosquito larvae. Community Ecol : CE 11:171–178. CrossRefPubMedGoogle Scholar
  11. 11.
    Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546CrossRefPubMedGoogle Scholar
  12. 12.
    Muturi EJ, Ramirez JL, Rooney AP, Kim C-H (2017) Comparative analysis of gut microbiota of mosquito communities in Central Illinois. PLoS Negl Trop Dis 11:e0005377. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Charan SS, Pawar KD, Severson DW, Patole MS, Shouche YS (2013) Comparative analysis of midgut bacterial communities of Aedes aegypti mosquito strains varying in vector competence to dengue virus. Parasitol Res 112:2627–2637. CrossRefPubMedGoogle Scholar
  14. 14.
    David MR, Santos LM, Vicente AC, Maciel-de-Freitas R (2016) Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan. Mem Inst Oswaldo Cruz 111:577–587. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kim CH, Lampman RL, Muturi EJ (2015) Bacterial communities and midgut microbiota associated with mosquito populations from waste tires in East-Central Illinois. J Med Entomol 52:63–75. CrossRefPubMedGoogle Scholar
  16. 16.
    Walker ED, Olds EJ, Merritt RW (1988) Gut content analysis of mosquito larvae (Diptera: Culicidae) using Dapi stain and epifluorescence microscopy. J Med Entomol 25:551–554. CrossRefPubMedGoogle Scholar
  17. 17.
    Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5:e1000423. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cirimotich CM, Ramirez JL, Dimopoulos G (2011) Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe 10:307–310. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bian G, Zhou G, Lu P, Xi Z (2013) Replacing a native Wolbachia with a novel strain results in an increase in endosymbiont load and resistance to dengue virus in a mosquito vector. PLoS Negl Trop Dis 7:e2250. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xi Z, Gavotte L, Xie Y, Dobson SL (2008) Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host. BMC Genomics 9(1):1. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wipfli MS, Merritt RW (1994) Disturbance to a stream food web by a bacterial larvicide specific to black flies: feeding responses of predatory macroinvertebrates. Freshwat Biol 32:91–103. CrossRefGoogle Scholar
  22. 22.
    Lacey LA (2007) Bacillus thuringiensis serovariety israelensis and bacillus sphaericus for mosquito control. J Am Mosq Control Assoc 23:133–163.[133:BTSIAB]2.0.CO;2Google Scholar
  23. 23.
    Pruszynski CA, Hribar LJ, Mickle R, Leal AL (2017) A large scale Biorational approach using Bacillus thuringiensis israeliensis (strain AM65-52) for managing Aedes aegypti populations to prevent dengue, chikungunya and Zika transmission. PLoS One 12:e0170079. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Butler M, Lebrun RA, Ginsberg HS, Gettman AD (2006) Efficacy of methoprene for mosquito control in storm water catch basins. J Am Mosq Control Assoc 22:333–338.[333:eomfmc];2Google Scholar
  25. 25.
    Chilcott CN, Knowles BH, Ellar DJ, Drobniewski FA (1990) Mechanism of action of Bacillus thuringiensis israelensis parasporal body. In: de Barjac H, Sutherland DJ (eds) Bacterial Control of Mosquitoes & Black Flies: Biochemistry, Genetics & Applications of Bacillus thuringiensis israelensis and Bacillus sphaericus. Springer Netherlands, Dordrecht, pp 45–65CrossRefGoogle Scholar
  26. 26.
    Loschiavo SR (1976) Effects of the synthetic insect growth regulators methoprene and hydroprene on survival, development or reproduction of six species of stored-products insects 12. J Econ Entomol 69:395–399. CrossRefGoogle Scholar
  27. 27.
    Lacey LA, Merritt RW (2003) The safety of bacterial microbial agents used for black fly and mosquito control in aquatic environments. In: Hokkanen HMT, Hajek AE (eds) Environmental impacts of microbial insecticides: need and methods for risk assessment. Springer Netherlands, Dordrecht, pp 151–168CrossRefGoogle Scholar
  28. 28.
    Duguma D, Hall MW, Rugman-Jones P, Stouthamer R, Neufeld JD, Walton WE (2015) Microbial communities and nutrient dynamics in experimental microcosms are altered after the application of a high dose of Bti. J Appl Ecol 52:763–773. CrossRefGoogle Scholar
  29. 29.
    Muturi EJ, Orindi BO, Kim C-H (2013) Effect of leaf type and pesticide exposure on abundance of bacterial taxa in mosquito larval habitats. PLoS One 8:e71812. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Muturi EJ, Donthu RK, Fields CJ, Moise IK, Kim C-H (2017) Effect of pesticides on microbial communities in container aquatic habitats. Sci Rep 7:44565. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Darsie RF, Ward RA (2005) Identification and geographical distribution of the mosquitos of North America, North of MexicoGoogle Scholar
  32. 32.
    Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ridley EV, Wong ACN, Westmiller S, Douglas AE (2012) Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS One 7:e36765. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516–4522. CrossRefPubMedGoogle Scholar
  35. 35.
    Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O'Connor M, Harnedy N, O'Connor K, Henry C, O'Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O'Toole PW (2010) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108Google Scholar
  36. 36.
    Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, Knights D, Gajer P, Ravel J, Fierer N, Gordon JI, Knight R (2011) Moving pictures of the human microbiome. Genome Biol 12:R50. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pechal JL, Benbow ME (2016) Microbial ecology of the salmon necrobiome: evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes. Environ Microbiol 18:1511–1522. CrossRefPubMedGoogle Scholar
  39. 39.
    Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59. CrossRefPubMedGoogle Scholar
  40. 40.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. CrossRefPubMedGoogle Scholar
  41. 41.
    Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methe B, DeSantis TZ, Petrosino JF, Knight R, Birren BW (2011) Chimeric 16S rRNA sequence formation and detection in sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. Isme J 6:610–618. CrossRefPubMedGoogle Scholar
  45. 45.
    Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, Caporaso JG, Angenent LT, Knight R, Ley RE (2012) Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. Isme J 6:94–103. CrossRefPubMedGoogle Scholar
  46. 46.
    Lehmann K, Singer A, Bowes MJ, Ings NL, Field D, Bell T (2015) 16S rRNA assessment of the influence of shading on early-successional biofilms in experimental streams. FEMS Microbiol. Ecol. 91:fiv129. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fox J, Weisberg S (2011) An R companion to applied regression. Sage, Thousand OaksGoogle Scholar
  48. 48.
    team Rcd RA Language and Environment for Statistical Computing (2014), R Foundation for Statistical Computing, Vienna, Austria, R foundation for statistical computing. ISBN 3-900051-07-0Google Scholar
  49. 49.
    Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. CrossRefGoogle Scholar
  50. 50.
    Wickham H (2016) ggplot2: elegant graphics for data analysis. SpringerGoogle Scholar
  51. 51.
    McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Liaw A, Wiener M (2002) Classification and regression by randomForest. R news 2:18–22Google Scholar
  53. 53.
    McDaniel IN, Horsfall WR (1963) Bionomics of Aedes stimulans (Diptera: Culicidae) I. Effect of moisture on the distribution of eggs. Am Midl Nat 70:479–489. CrossRefGoogle Scholar
  54. 54.
    Podrabsky JE, Hrbek T, Hand SC (1997) Physical and chemical characteristics of ephemeral pond habitats in the Maracaibo basin and Llanos region of Venezuela. Hydrobiologia 362:67–77. CrossRefGoogle Scholar
  55. 55.
    Carrino-Kyker SR, Swanson AK (2008) Temporal and spatial patterns of eukaryotic and bacterial communities found in vernal pools. Appl Environ Microbiol 74:2554–2557. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Duguma D, Hall MW, Rugman-Jones P, Stouthamer R, Terenius O, Neufeld JD, Walton WE (2015) Developmental succession of the microbiome of Culex mosquitoes. BMC Microbiol 15:140. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Wang Y, Gilbreath TM, Kukutla P, Yan G, Xu J (2011) Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 6:e24767. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Brabant PJ, Dobson SL (2013) Methoprene effects on survival and reproductive performance of adult female and male Aedes aegypti. J Am Mosq Control Assoc 29:369–375. CrossRefPubMedGoogle Scholar
  59. 59.
    Bai H, Gelman DB, Palli SR (2010) Mode of action of methoprene in affecting female reproduction in the African malaria mosquito, Anopheles gambiae. Pest Manag Sci 66:936–943. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Tetreau G, Stalinski R, Kersusan D, Veyrenc S, David J-P, Reynaud S, Després L (2012) Decreased toxicity of Bacillus thuringiensis subsp. israelensis to mosquito larvae after contact with leaf litter. Appl Environ Microbiol 78:5189–5195CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Duguma D, Rugman-Jones P, Kaufman MG, Hall MW, Neufeld JD, Stouthamer R, Walton WE (2013) Bacterial communities associated with Culex Mosquito larvae and two emergent aquatic plants of bioremediation importance. PLoS One 8:e72522. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Pennington MJ, Prager SM, Walton WE, Trumble JT (2016) Culex quinquefasciatus larval microbiomes vary with instar and exposure to common wastewater contaminants6: 21969. doi:
  63. 63.
    Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, Shahbazkia HR, Awono-Ambene PH, Levashina EA, Christen R, Morlais I (2012) Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog 8:e1002742. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Minard G, Tran FH, Raharimalala FN, Hellard E, Ravelonandro P, Mavingui P, Valiente MC (2013) Prevalence, genomic and metabolic profiles of Acinetobacter and Asaia associated with field-caught Aedes albopictus from Madagascar. FEMS Microbiol Ecol 83:63–73. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Joseph P. Receveur
    • 1
    • 2
  • Jennifer L. Pechal
    • 2
  • M. Eric Benbow
    • 2
    • 3
    • 4
  • Gary Donato
    • 5
  • Tadhgh Rainey
    • 5
  • John R. Wallace
    • 1
    Email author
  1. 1.Department of BiologyMillersville UniversityMillersvilleUSA
  2. 2.Department of EntomologyMichigan State UniversityEast LansingUSA
  3. 3.Department of Osteopathic Medical SpecialtiesMichigan State UniversityEast LansingUSA
  4. 4.Ecology, Evolutionary Biology and Behavior ProgramMichigan State UniversityEast LansingUSA
  5. 5.Hunterdon County Division of HealthFlemingtonUSA

Personalised recommendations