Microbial Ecology

, Volume 76, Issue 3, pp 706–718 | Cite as

World’s Largest Mass Bathing Event Influences the Bacterial Communities of Godavari, a Holy River of India

  • Kunal Jani
  • Dhiraj Dhotre
  • Jayashree Bandal
  • Yogesh Shouche
  • Mangesh Suryavanshi
  • Vinay Rale
  • Avinash SharmaEmail author
Environmental Microbiology


Kumbh Mela is one of the largest religious mass gathering events (MGE) involving bathing in rivers. The exponential rise in the number of devotees, from around 0.4 million in 1903 to 120 million in 2013, bathing in small specified sites can have a dramatic impact on the river ecosystem. Here, we present the spatiotemporal profiling of bacterial communities in Godavari River, Nashik, India, comprising five sites during the Kumbh Mela, held in 2015. Assessment of environmental parameters indicated deterioration of water quality. Targeted amplicon sequencing demonstrates approximately 37.5% loss in microbial diversity because of anthropogenic activity during MGE. A significant decrease in phyla viz. Actinobacteria, Chloroflexi, Proteobacteria, and Bacteroidetes was observed, while we noted substantial increase in prevalence of the phylum Firmicutes (94.6%) during MGE. qPCR estimations suggested nearly 130-fold increase in bacterial load during the event. Bayesian mixing model accounted the source of enormous incorporation of bacterial load of human origin. Further, metagenomic imputations depicted increase in virulence and antibiotic resistance genes during the MGE. These observations suggest the striking impact of the mass bathing on river ecosystem. The subsequent increase in infectious diseases and drug-resistant microbes pose a critical public health concern.


16S rRNA gene Kumbh Mela Antibiotic resistance Disease outbreak Public health Godavari River 



We would like to acknowledge director NCCS for providing infrastructure. We are grateful to Dr. Vilas Sinkar for providing valuable comments and critical review of the manuscript. Mr. Vishal Nawale is highly acknowledged for his help in sampling.

Author Contributions

K.J., J.B., Y.S. and A.S. were involved in the study design; J.B. was involved in the sample collection; K.J., J.B., Y.S. M.S. and A.S. were involved in the experimental work; K.J., D.D., Y.S., and A.S. were involved in the bioinformatics and statistical analysis; K.J., D.D., Y.S., V. R. and A.S interpretation of the data; K.J., D.D., Y.S., V. R. and A.S. were involved in the drafting of the manuscript; K.J., D.D., Y.S., V. R. and A.S were involved in the critical revision of the manuscript.

Funding Information

This work was supported by the “Department of Biotechnology (DBT), Government of India” (by Grant no. BT/PR/0054/NDB/52/94/2007), under the project “Establishment of Microbial Culture Collection.”

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

248_2018_1169_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1338 kb).


  1. 1.
    Abubakar I, Gautret P, Brunette GW, Blumberg L, Johnson D, Poumerol G, Memish ZA, Barbeschi M, Khan AS (2012) Global perspectives for prevention of infectious diseases associated with mass gatherings. Lancet Infect Dis 12(1):66–74CrossRefPubMedGoogle Scholar
  2. 2.
    Banks AL (1961) Religious fairs and festivals in INDIA. Lancet:162–163Google Scholar
  3. 3.
    Koch K (2013) Inside India’s pop-up city. Harvard Gazette Accessed 04 June 2017
  4. 4.
    Vortmann M, Balsari S, Holman SR, Greenough PG (2015) Water, sanitation, and hygiene at the world’s largest mass gathering. Curr Infect Dis Rep 17(2):461. CrossRefPubMedGoogle Scholar
  5. 5.
    David S, Roy N (2016) Public health perspectives from the biggest human mass gathering on earth: KumbhMela, India. Int J Infect Dis 47:42–45CrossRefPubMedGoogle Scholar
  6. 6.
    Baranwal A, Anand A, Singh R, Deka M, Paul A, Borgohain S, Roy N (2015) Managing the earth’s biggest mass gathering event and wash conditions: Maha kumbh mela (India). PLoS Curr doi:
  7. 7.
    World Health Organization. Communicable disease alert and response for mass gatherings. Technical workshop. Geneva, Switzerland, April 29–30, 2008. Geneva: WHO. 2008 Accessed 04 June 2017
  8. 8.
    Imperial Gazette of India. Volume 13 (1903) Accessed 04 June 2017
  9. 9.
    Labbate M, Seymour JR, Lauro F, Brown MV (2016) Editorial: anthropogenic impacts on the microbial ecology and function of aquatic environments. Front Microbiol 7:1044. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lee CS, Kim M, Lee C, Yu Z, Lee J (2016) The microbiota of recreational freshwaters and the implications for environmental and public health. Front Microbiol 7:1826. PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hlavsa MC, Roberts VA, Anderson AR, Hill VR, Kahler AM, Orr M, Garrison LE, Hicks LA, Newton A, Hilborn ED, Wade TJ, Beach MJ, Yoder JS; CDC (2011) Surveillance for waterborne disease outbreaks and other health events associated with recreational water—United States, 2007-2008. MMWR Surveill Summ 60(12):1–32Google Scholar
  12. 12.
    Paíga P, Delerue-Matos C (2017) Anthropogenic contamination of Portuguese coastal waters during the bathing season: assessment using caffeine as a chemical marker. Mar Pollut Bull 120(1–2):355–363CrossRefPubMedGoogle Scholar
  13. 13.
    Paerl HW, Dyble J, Moisander PH, Noble RT, Piehler MF, Pinckney JL, Steppe TF, Twomey L, Valdes LM (2003) Microbial indicators of aquatic ecosystem change: current applications to eutrophication studies. FEMS Microbiol Ecol 46(3):233–246CrossRefPubMedGoogle Scholar
  14. 14.
    Newton RJ, Bootsma MJ, Morrison HG, Sogin ML, McLellan SL (2013) A microbial signature approach to identify fecal pollution in the waters off an urbanized coast of Lake Michigan. Microb Ecol 65(4):1011–1023CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    King GM (2014) Urban microbiomes and urban ecology: how do microbes in the built environment affect human sustainability in cities. J Microbiol 52(9):721–728. CrossRefPubMedGoogle Scholar
  16. 16.
    Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’ s ecosystems. Science 277(5325):494–499CrossRefGoogle Scholar
  17. 17.
    Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R (2003) An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol 69(5):2928–2935CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lindström ES, Kamst-Van Agterveld MP, Zwart G (2005) Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol 71(12):8201–8206CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hu C, Rea C, Yu Z, Lee J (2016) Relative importance of Microcystis abundance and diversity in determining microcystin dynamics in Lake Erie coastal wetland and downstream beach water. J Appl Microbiol 120(1):138–151CrossRefPubMedGoogle Scholar
  20. 20.
    Tan B, Ng C, Nshimyimana JP, Loh LL, Gin KY, Thompson JR (2015) Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities. Front Microbiol 6:1027. PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Marti R, Ribun S, Aubin JB, Colinon C, Petit S, Marjolet L, Gourmelon M, Schmitt L, Breil P, Cottet M, Cournoyer B (2017) Human-driven microbiological contamination of benthic and hyporheic sediments of an intermittent peri-urban river assessed from MST and 16S rRNA genetic structure analyses. Front Microbiol 8:19. PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kumbhare SV, Dhotre DP, Dhar SK, Jani K, Apte DA, Shouche YS, Sharma A (2015) Insights into diversity and imputed metabolic potential of bacterial communities in the continental shelf of Agatti Island. PLoS One 10(6):e0129864CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sharma A, Paul D, Dhotre D, Jani K, Pandey A, Shouche YS (2017) Deep sequencing analysis of bacterial community structure of Soldhar hot spring, India. Microbiology 86(1):136–142CrossRefGoogle Scholar
  24. 24.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108(Suppl 1):4516–4522CrossRefPubMedGoogle Scholar
  25. 25.
    Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461CrossRefPubMedGoogle Scholar
  30. 30.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bhute S, Pande P, Shetty SA, Shelar R, Mane S, Kumbhare SV, Gawali A, Makhani H, Navandar M, Dhotre D, Lubree H, Agarwal D, Patil R, Ozarkar S, Ghaskadbi S, Yajnik C, Juvekar S, Makharia GK, Shouche YS (2016) Molecular characterization and meta-analysis of gut microbial communities illustrate enrichment of prevotella and megasphaera in Indian subjects. Front Microbiol 7:660. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2013) Community ecology package (vegan). https://cranr-projectorg/web/packages/vegan/indexhtml Accessed 04 June 2017
  33. 33.
    Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman FD, Knight R, Kelley ST (2011) Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8(9):761–763CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jani K, Ghattargi V, Pawar S, Inamdar M, Shouche Y, Sharma A (2017) Anthropogenic activities induce depletion in microbial communities at urban sites of the river Ganges. Curr Microbiol.
  37. 37.
    Newton RJ, McLellan SL (2015) A unique assemblage of cosmopolitan freshwater bacteria and higher community diversity differentiate an urbanized estuary from oligotrophic Lake Michigan. Front Microbiol 6:1028. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Booth DB, Jackson CR (1997) Urbanization of aquatic systems: degradation thresholds, stormwater detection, and the limits of mitigation. J Am Water Resour Assoc 33(5):1077–1090CrossRefGoogle Scholar
  39. 39.
    Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568CrossRefGoogle Scholar
  40. 40.
    Hale RL, Turnbull L, Earl SR, Childers DL, Grimm NB (2014) Stormwater infrastructure controls runoff and dissolved material export from arid urban watersheds. Ecosystems 18(1):62–75CrossRefGoogle Scholar
  41. 41.
    Kaushal SS, Belt KT (2012) The urban watershed continuum: evolving spatial and temporal dimensions. Urban Ecosyst 15(2):409–435CrossRefGoogle Scholar
  42. 42.
    Wollheim WM, Pellerin BA, Vörösmarty CJ, Hopkinson CS (2005) N retention in urbanizing headwater catchments. Ecosystems 8(8):871–884CrossRefGoogle Scholar
  43. 43.
    Allgaier M, Grossart HP (2006) Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes in northeastern Germany. Aquat Microb Ecol 45:115–128. CrossRefGoogle Scholar
  44. 44.
    Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011a) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75(1):14–49CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Horner-Devine MC, Leibold MA, Smith VH, Bohannan BJM (2003) Bacterial diversity patterns along a gradient of primary productivity. Ecol Lett 6(7):613–622CrossRefGoogle Scholar
  46. 46.
    Jankowski K, Schindler DE, Horner-Devine MC (2014) Resource availability and spatial heterogeneity control bacterial community response to nutrient enrichment in lakes. PLoS One 9(1):e86991CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yannarell CC, Triplett EW (2005) Geographic and environmental sources of variation in lake bacterial community composition. Appl Environ Microbiol 71(1):227–239CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Spietz RL, Williams CM, Rocap G, Horner-Devine MC (2015) A dissolved oxygen threshold for shifts in bacterial community structure in a seasonally hypoxic estuary. PLoS One 10(8):e0135731. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Amalfitano S, Corno G, Eckert E, Fazi S, Ninio S, Callieri C, Grossart HP, Eckert W (2017) Tracing particulate matter and associated microorganisms in freshwaters. Hydrobiologia 800:145–154CrossRefGoogle Scholar
  50. 50.
    Foppen JWA, Schijven JF (2006) Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturated conditions. Water Res 40:401–426CrossRefPubMedGoogle Scholar
  51. 51.
    Mahler BJ, Personn JC, Lods GF, Drogue C (2000) Transport of free and particulate associated bacteria in karst. J Hydrol 238:179–193CrossRefGoogle Scholar
  52. 52.
    Bai S, Lung WS (2005) Modeling sediment impact on the transport of fecal bacteria. Water Res 39:5232–5240CrossRefPubMedGoogle Scholar
  53. 53.
    Fries JS, Noble RT, Characklis GW (2006) Attachment of fecal indicator bacteria to particles in the Neuse River estuary, N.C. J Environ Eng Am Soc Civil Eng 132:1338–1345CrossRefGoogle Scholar
  54. 54.
    Fisher JC, Levican A, Figueras MJ, McLellan SL (2014) Population dynamics and ecology of Arcobacter in sewage. Front Microbiol 5:525. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Gibbons SM, Jones E, Bearquiver A, Blackwolf F, Roundstone W, Scott N, Hooker J, Madsen R, Coleman ML, Gilbert JA (2014) Human and environmental impacts on river sediment microbial communities. PLoS One 9(5):e97435CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Warnecke F, Amann R, Pernthaler J (2004) Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ Microbiol 6(3):242–253CrossRefPubMedGoogle Scholar
  57. 57.
    Van der Gucht K, Vandekerckhove T, Vloemans N, Cousin S, Muylaert K, Sabbe K, Gillis M, Declerk S, De Meester L, Vyverman W (2005) Characterization of bacterial communities in four fresh water lakes differing in nutrient load and food web structure. FEMS Microbiol Ecol 2005;53(2):205–220Google Scholar
  58. 58.
    Rose KC, Hamilton DP, Williamson CE, McBride CG, Fischer JM, Olson MH, Saros JE, Allan MG, Cabrol N (2014) Light attenuation characteristics of glacially-fed lakes. J Geophys Res Biogeosci 119:1446–1457CrossRefGoogle Scholar
  59. 59.
    Jung YT, Kang SJ, Oh TK, Yoon JH, Kim BH (2009) Planomicrobium flavidum sp.nov., isolated from a marine solar saltern, and transfer of Planococcus stackebrandtii Mayilraj et al.2005tothegenus Planomicrobium as Planomicrobium stackebrandtii comb. nov. Int J Syst Evol Microbiol 59:2929–2933CrossRefPubMedGoogle Scholar
  60. 60.
    Fewtrell L, Kay D (2015) Recreational water and infection: a review of recent findings. Curr Environ Health Rep 2(1):85–94CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Stevenson AH (1953) Studies of bathing water quality and health. Am J Public Health Nations Health 43(5 Pt 1):529–538CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Field KG, Samadpour M (2007) Fecal source tracking, the indicator paradigm, and managing water quality. Water Res 41(16):3517–3538CrossRefPubMedGoogle Scholar
  63. 63.
    Guidelines for safe recreational water environments Volume 1: Coastal and Fresh Waters. WHO 2003. 04 June 2017
  64. 64.
    McLellan SL, Eren AM (2014) Discovering new indicators of fecal pollution. Trends Microbiol 22(12):697–706CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Wade TJ, Calderon RL, Sams E, Beach M, Brenner KP, Williams AH, Dufour AP (2006) Rapidly measured indicators of recreational water quality are predictive of swimming-associated gastrointestinal illness. Environ Health Perspect 114(1):24–28CrossRefPubMedGoogle Scholar
  66. 66.
    Wade TJ, Calderon RL, Brenner KP, Sams E, Beach M, Haugland R, Wymer L, Dufour AP (2008) High sensitivity of children to swimming-associated gastrointestinal illness: results using a rapid assay of recreational water quality. Epidemiology 19(3):375–383CrossRefPubMedGoogle Scholar
  67. 67.
    Fleisher JM, Fleming LE, Solo-Gabriele HM, Kish JK, Sinigalliano CD, Plano L, Elmir SM, Wang JD, Withum K, Shibata T, Gidley ML, Abdelzaher A, He G, Ortega C, Zhu X, Wright M, Hollenbeck J, Backer LC (2010) The BEACHES study: health effects and exposures from non-point source microbial contaminants in subtropical recreational marine waters. Int J Epidemiol 39:1291–1298CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Papastergiou P, Mouchtouri V, Pinaka O, Katsiaflaka A, Rachiotis G, Hadjichristodoulou C (2012) Elevated bathing-associated disease risks despite certified water quality: a cohort study. Int J Environ Res Public Health 9(5):1548–1565CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ahammad ZS, Sreekrishnan TR, Hands CL, Knapp CW, Graham DW (2014) Increased waterborne blaNDM-1 resistance gene abundances associated with seasonal human pilgrimages to the upper Ganges River. Environ Sci Technol 48(5):3014–3020CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Jani K, Khare K, Senik S, Karodi P, Vemuluri VR, Bandal J, Shouche Y, Rale V, Sharma (2017) A Corynebacterium godavarianum sp. nov., isolated from Godavari River. India Int J Syst Evol Microbiol.
  71. 71.
    Hays JN (2005) Epidemics and pandemics: their impacts on human history. Santa Barbara, ABC-CLIO,CA, pp 214–219Google Scholar
  72. 72.
    Bryceson AD (1977) Cholera, the flickering flame. Proc R Soc Med 70(5):363–365PubMedPubMedCentralGoogle Scholar
  73. 73.
    Aguilera JF, Perrocheau A, Meffre C, Hahné S, the W135 Working Group (2002) Outbreak of serogroup W135 meningococcal disease after the Hajj pilgrimage, Europe, 2000. Emerg Infect Dis 8(8):761–767CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Blyth CC, Foo H, van Hal SJ, Hurt AC, Barr IG, McPhie K, Armstrong PK, Rawlinson WD, Sheppeard V, Conaty S, Staff M, Dwyer DE, World Youth Day (2008) Influenza study group (2010) influenza outbreaks during world youth day 2008 mass gathering. Emerg Infect Dis 16(5):809–815CrossRefGoogle Scholar
  75. 75.
    Memish ZA, Stephens GM, Steffen R, Ahmed QA (2012) Emergence of medicine for mass gatherings: lessons from the hajj. Lancet Infect Dis Lancet Infect Dis 12(1):56–65CrossRefPubMedGoogle Scholar
  76. 76.
    Memish ZA, Zumla A, Alhakeem RF, Assiri A, Turkestani A, Al Harby KD, Alyemni M, Dhafar K, Gautret P, Barbeschi M, McCloskey B, Heymann D, Al Rabeeah AA, Al-Tawfiq JA (2014) Hajj: infectious disease surveillance and control. Lancet 383(9934):2073–2082CrossRefPubMedGoogle Scholar
  77. 77.
    Nsoesie EO, Kluberg SA, Mekaru SR, Majumder MS, Khan K, Hay SI, Brownstein JS (2015) New digital technologies for the surveillance of infectious diseases at mass gathering events. Clin Microbiol Infect 21(2):134–140CrossRefPubMedGoogle Scholar
  78. 78.
    Memish ZA, Alrabeeah AA (2011) Jeddah declaration on mass gatherings health. Lancet Infect Dis.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Centre for Microbial Resource, National Centre for Cell SciencePuneIndia
  2. 2.Symbiosis School of Biological SciencesSymbiosis International UniversityPuneIndia
  3. 3.Department of MicrobiologyKTHM CollegeNashikIndia

Personalised recommendations