Skip to main content

Long-Term Harvest Residue Retention Could Decrease Soil Bacterial Diversities Probably Due to Favouring Oligotrophic Lineages

Abstract

Harvest residues contain large stores of carbon (C) and nitrogen (N) in forest plantations. Decomposing residues can release labile C and N into soil and thus provide substrates for soil bacterial communities. Previous studies showed that residue retention could increase soil C and N pools and activate bacterial communities in the short term (≤ 10 years). The current study examined the effects of a long-term (19-year) harvest residue retention on soil total and water and hot water extractable C and N pools, as well as bacterial communities via Illumina MiSeq sequencing. The experiment was established in a randomised complete block design with four replications, southeast Queensland of Australia, including no (R0), single (R1, 51 to 74 t ha−1 dry matter) and double quantities (R2, 140 t ha−1 dry matter) of residues retained. Generally, no significant differences existed in total C and N, as well as C and N pools extracted by water and hot water among the three treatments, probably due to negligible amounts of labile C and N released from harvest residues. Soil δ15N significantly decreased from R0 to R1 to R2, probably due to reduced N leaching with residue retention (P < 0.001). Residue retention increased the relative abundances of Actinobacteria (P = 0.016) and Spartobacteria (P < 0.001), whereas decreased Betaproteobacteria (P = 0.050). This favour for the oligotrophic groups probably caused the decrease in the bacterial diversity as revealed by Shannon index (P = 0.025). Hence, our study suggests that residue retention is not an appropriate management practice in the long term.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Paquette A, Messier C (2010) The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ 8:27–34

    Article  Google Scholar 

  2. Hernández J, del Pino A, Salvo L, Arrarte G (2009) Nutrient export and harvest residue decomposition patterns of a Eucalyptus dunnii Maiden plantation in temperate climate of Uruguay. For Ecol Manag 258:92–99

    Article  Google Scholar 

  3. Nave LE, Vance ED, Swanston CW, Curtis PS (2010) Harvest impacts on soil carbon storage in temperate forests. For Ecol Manag 259:857–866

    Article  Google Scholar 

  4. Smaill SJ, Clinton P, Greenfield L (2008) Postharvest organic matter removal effects on FH layer and mineral soil characteristics in four New Zealand Pinus radiata plantations. For Ecol Manag 256:558–563

    Article  Google Scholar 

  5. Jones HS, Garrett LG, Beets PN, Kimberley MO, Oliver GR (2008) Impacts of harvest residue management on soil carbon stocks in a plantation forest. Soil Sci Soc Am J 72:1621–1627

    Article  CAS  Google Scholar 

  6. Smolander A, Kitunen V, Tamminen P, Kukkola M (2010) Removal of logging residue in Norway spruce thinning stands: long-term changes in organic layer properties. Soil Biol Biochem 42:1222–1228

    Article  CAS  Google Scholar 

  7. Eisenbies MH, Vance ED, Aust WM, Seiler JR (2009) Intensive utilization of harvest residues in southern pine plantations: quantities available and implications for nutrient budgets and sustainable site productivity. Bioenergy Res 2:90–98

    Article  Google Scholar 

  8. Robertson FA, Thorburn PJ (2007) Management of sugarcane harvest residues: consequences for soil carbon and nitrogen. Soil Res 45:13–23

    Article  CAS  Google Scholar 

  9. Simpson JA, Xu ZH, Smith T, Keay P, Osborne DO, Podberscek M (2000) Effects of site management in pine plantations on the coastal lowlands of subtropical Queensland, Australia. In: Nambiar EKS, Tiarks, A, Cossalter C, Ranger J (ed) Proceedings of the Workshop on Site Management and Productivity in Tropical Plantation Forests, 7–11 December 1999, Kerala, India. Center for International Forestry Research, Bogor, Indonesia, pp 73–81

  10. Chen C, Xu Z (2005) Soil carbon and nitrogen pools and microbial properties in a 6-year-old slash pine plantation of subtropical Australia: impacts of harvest residue management. For Ecol Manag 206:237–247

    Article  Google Scholar 

  11. Butnor JR, Johnsen KH, Sanchez FG (2006) Whole-tree and forest floor removal from a loblolly pine plantation have no effect on forest floor CO2 efflux 10 years after harvest. For Ecol Manag 227:89–95

    Article  Google Scholar 

  12. Versini A, Nouvellon Y, Laclau JP et al (2013) The manipulation of organic residues affects tree growth and heterotrophic CO2 efflux in a tropical Eucalyptus plantation. For Ecol Manag 301:79–88

    Article  Google Scholar 

  13. Huang Z, Clinton PW, Davis MR (2011a) Post-harvest residue management effects on recalcitrant carbon pools and plant biomarkers within the soil heavy fraction in Pinus radiata plantations. Soil Biol Biochem 43:404–412

    Article  CAS  Google Scholar 

  14. Huang Z, Clinton PW, Davis MR, Yang Y (2011b) Impacts of plantation forest management on soil organic matter quality. J Soils Sediments 11:1309–1316

    Article  Google Scholar 

  15. Kumaraswamy S, Mendham D, Grove T, O’Connell A, Sankaran K, Rance S (2014) Harvest residue effects on soil organic matter, nutrients and microbial biomass in eucalypt plantations in Kerala, India. For Ecol Manag 328:140–149

    Article  Google Scholar 

  16. Blumfield TJ, Xu Z, Saffigna PG (2004) Carbon and nitrogen dynamics under windrowed residues during the establishment phase of a second-rotation hoop pine plantation in subtropical Australia. For Ecol Manag 200:279–291

    Article  Google Scholar 

  17. Courty PE, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault MP, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698

    Article  CAS  Google Scholar 

  18. Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320:1034–1039

    Article  PubMed  CAS  Google Scholar 

  19. Semenov AV, e Silva MCP, Szturc-Koestsier AE, Schmitt H, Salles JF, van Elsas JD (2012) Impact of incorporated fresh 13C potato tissues on the bacterial and fungal community composition of soil. Soil Biol Biochem 49:88–95

    Article  CAS  Google Scholar 

  20. Su P, Lou J, Brookes PC, Luo Y, He Y, Xu J (2015) Taxon-specific responses of soil microbial communities to different soil priming effects induced by addition of plant residues and their biochars. J Soils Sediments 17:1–11

    Google Scholar 

  21. Fernandez AL, Sheaffer CC, Wyse DL, Staley C, Gould TJ, Sadowsky MJ (2016) Structure of bacterial communities in soil following cover crop and organic fertilizer incorporation. Appl Microbiol Biotechnol 100:9331–9341

    Article  PubMed  CAS  Google Scholar 

  22. Wang J, Li X, Zhu A, Zhang X, Zhang H, Liang W (2012) Effects of tillage and residue management on soil microbial communities in North China. Plant Soil Environ 58:28–33

    Article  CAS  Google Scholar 

  23. Ceja-Navarro JA, Rivera FN, Patiño-Zúñiga L, Govaerts B, Marsch R, Vila-Sanjurjo A, Dendooven L (2010) Molecular characterization of soil bacterial communities in contrasting zero tillage systems. Plant Soil 329:127–137

    Article  CAS  Google Scholar 

  24. De la Cruz-Barrón M, Cruz-Mendoza A, Navarro-Noya YE, Ruiz-Valdiviezo VM, Ortíz-Gutiérrez D, Ramírez-Villanueva DA, Luna-Guido M, Thierfelder C, Wall PC, Verhulst N (2017) The bacterial community structure and dynamics of carbon and nitrogen when maize (Zea mays L.) and its neutral detergent fibre were added to soil from Zimbabwe with contrasting management practices. Microb Ecol 73:135–152

    Article  PubMed  Google Scholar 

  25. Navarro-Noya YE, Gómez-Acata S, Montoya-Ciriaco N, Rojas-Valdez A, Suárez-Arriaga MC, Valenzuela-Encinas C, Jiménez-Bueno N, Verhulst N, Govaerts B, Dendooven L (2013) Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol Biochem 65:86–95

    Article  CAS  Google Scholar 

  26. Negassa WC, Guber AK, Kravchenko AN, Marsh TL, Hildebrandt B, Rivers ML (2015) Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria. PLoS One 10:e0123999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mathers NJ, Xu Z (2003) Solid-state 13C NMR spectroscopy: characterization of soil organic matter under two contrasting residue management regimes in a 2-year-old pine plantation of subtropical Australia. Geoderma 114:19–31

    Article  CAS  Google Scholar 

  28. Mathers NJ, Mendham DS, O’Connell AM, Grove TS, Xu Z, Saffigna PG (2003) How does residue management impact soil organic matter composition and quality under Eucalyptus globulus plantations in southwestern Australia? For Ecol Manag 179:253–267

    Article  Google Scholar 

  29. Simpson JA, Smith TE, Keay PT, Osborne DO, Xu ZH, Podberscek MI (2004) Impacts of inter-rotation site management on tree growth and soil properties in the first 6.4 years of a hybrid pine plantation in subtropical Australia. In: Nambiar EKS, Ranger J, Tiarks A, Toma T (ed) Site management and productivity in tropical plantation forests: Proceedings of workshops in Congo July 2001 and China February 2003, pp 139–149

  30. Simpson JA (1998) Site specific fertilizer requirements of tropical pine plantations. In: Schulte A, Ruhiyat D (eds) Soils of tropical forest ecosystems. Springer Verlag, Heidelberg

    Google Scholar 

  31. Skjemstad J, Clarke P, Taylor J, Oades J, Newman R (1994) The removal of magnetic materials from surface soils—a solid state 13C CP/MAS NMR study. Soil Res 32:1215–1229

    Article  CAS  Google Scholar 

  32. Giovannoni SJ (1991) The polymerase chain reaction. In: Stackebrandt E, Goodfellow MD (eds) Nucleic acid techniques in bacterial systematics1st edn. Wiley, New York, pp 177–203

    Google Scholar 

  33. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow MD (eds) Nucleic acid techniques in bacterial systematics1st edn. Wiley, New York, pp 115–175

    Google Scholar 

  34. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  PubMed  CAS  Google Scholar 

  36. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  PubMed  CAS  Google Scholar 

  37. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodi EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Tutua SS (2009) Residue management and carbon and nutrient cycling in exotic pine plantations of Southeast Queensland. Dissertation, Giffith University

  40. Blumfield TJ, Xu Z, Prasolova NV, Mathers NJ (2006) Effect of overlying windrowed harvest residues on soil carbon and nitrogen in hoop pine plantations of subtropical Australia. J Soils Sediments 6:243–248

    Article  Google Scholar 

  41. Olsson BA, Staaf H, Lundkvist H, Bengtsson J, Kaj R (1996) Carbon and nitrogen in coniferous forest soils after clear-felling and harvests of different intensity. For Ecol Manag:19–32

  42. Mendham D, O’connell A, Grove T, Rance S (2003) Residue management effects on soil carbon and nutrient contents and growth of second rotation eucalypts. For Ecol Manag 181:357–372

    Article  Google Scholar 

  43. Hyvönen R, Olsson BA, Lundkvist H, Staaf H (2000) Decomposition and nutrient release from Picea abies (L.) Karst. and Pinus sylvestris L. logging residues. For Ecol Manag 126:97–112

    Article  Google Scholar 

  44. Krankina ON, Harmon ME, Griazkin AV (1999) Nutrient stores and dynamics of woody detritus in a boreal forest: modeling potential implications at the stand level. Can J For Res 29:20–32

    Article  Google Scholar 

  45. Bai SH, Reverchon F, Xu CY, Xu Z, Blumfield TJ, Zhao H, Van Zwieten L, Wallace HM (2015) Wood biochar increases nitrogen retention in field settings mainly through abiotic processes. Soil Biol Biochem 90:232–240

    Article  CAS  Google Scholar 

  46. Ibell PT, Xu Z, Blumfield TJ (2010) Effects of weed control and fertilization on soil carbon and nutrient pools in an exotic pine plantation of subtropical Australia. J Soils Sediments 10:1027–1038

    Article  CAS  Google Scholar 

  47. Ibell PT, Xu Z, Blumfield TJ (2013) The influence of weed control on foliar δ15N, δ13C and tree growth in an 8 year-old exotic pine plantation of subtropical Australia. Plant Soil 369:199–217

    Article  CAS  Google Scholar 

  48. Wang Y, Xu Z, Zheng J, Abdullah KM, Zhou Q (2015) δ15N of soil nitrogen pools and their dynamics under decomposing leaf litters in a suburban native forest subject to repeated prescribed burning in southeast Queensland, Australia. J Soils Sediments 15:1063–1074

    Article  CAS  Google Scholar 

  49. Palviainen M, Finér L, Laiho R, Shorohova E, Kapitsa E, Vanha-Majamaa I (2010) Carbon and nitrogen release from decomposing Scots pine, Norway spruce and silver birch stumps. For Ecol Manag 259:390–398

    Article  Google Scholar 

  50. Nierop KG, Verstraten JM, Tietema A, Westerveld JW, Wartenbergh PE (2006) Short-and long-term tannin induced carbon, nitrogen and phosphorus dynamics in Corsican pine litter. Biogeochemistry 79:275–296

    Article  CAS  Google Scholar 

  51. de Gannes V, Eudoxie G, Hickey WJ (2013) Prokaryotic successions and diversity in composts as revealed by 454-pyrosequencing. Bioresour Technol 133:573–580

    Article  PubMed  CAS  Google Scholar 

  52. Ramirez-Villanueva DA, Bello-López JM, Navarro-Noya YE, Luna-Guido M, Verhulst N, Govaerts B, Dendooven L (2015) Bacterial community structure in maize residue amended soil with contrasting management practices. Appl Soil Ecol 90:49–59

    Article  Google Scholar 

  53. Wallenstein MD, McMahon S, Schimel J (2007) Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol Ecol 59:428–435

    Article  PubMed  CAS  Google Scholar 

  54. Bernard L, Mougel C, Maron PA, Nowak V, Lévêque J, Henault C, Haichar FZ, Berge O, Marol C, Balesdent J (2007) Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA-and RNA-SIP techniques. Environ Microbiol 9:752–764

    Article  PubMed  CAS  Google Scholar 

  55. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  56. Book AJ, Lewin GR, McDonald BR, Takasuka TE, Doering DT, Adams AS, Blodgett JA, Clardy J, Raffa KF, Fox BG (2014) Cellulolytic Streptomyces strains associated with herbivorous insects share a phylogenetically linked capacity to degrade lignocellulose. Appl Environ Microbiol 80:4692–4701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hartmann M, Howes CG, VanInsberghe D, Yu H, Bachar D, Christen R, Nilsson RH, Hallam SJ, Mohn WW (2012) Significant and persistent impact of timber harvesting on soil microbial communities in northern coniferous forests. ISME J 6:2199–2218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Jenkins SN, Rushton SP, Lanyon CV, Whiteley AS, Waite IS, Brookes PC, Kemmitt S, Evershed RP, O’Donnell AG (2010) Taxon-specific responses of soil bacteria to the addition of low level C inputs. Soil Biol Biochem 42:1624–1631

    Article  CAS  Google Scholar 

  59. Khodadad CL, Zimmerman AR, Green SJ, Uthandi S, Foster JS (2011) Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol Biochem 43:385–392

    Article  CAS  Google Scholar 

  60. Fierer N, Ladau J, Clemente JC, Leff JW, Owens SM, Pollard KS, Knight R, Gilbert JA, McCulley RL (2013) Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342:621–624

    Article  PubMed  CAS  Google Scholar 

  61. Che R, Wang W, Zhang J, Nguyen TT, Tao J, Wang F, Wang Y, Xu Z, Cui X (2016) Assessing soil microbial respiration capacity using rDNA-or rRNA-based indices: a review. J Soils Sediments 16:2698–2708

    Article  CAS  Google Scholar 

  62. Kuffner M, Hai B, Rattei T, Melodelima C, Schloter M, Zechmeister-Boltenstern S, Jandl R, Schindlbacher A, Sessitsch A (2012) Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing. FEMS Microbiol Ecol 82:551–562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Da Rocha UN, Andreote FD, de Azevedo JL, van Elsas JD, van Overbeek LS (2010) Cultivation of hitherto-uncultured bacteria belonging to the Verrucomicrobia subdivision 1 from the potato (Solanum tuberosum L.) rhizosphere. J Soils Sediments 10:326–339

    Article  CAS  Google Scholar 

  64. Lin YT, Huang YJ, Tang SL, Whitman WB, Coleman DC, Chiu CY (2010) Bacterial community diversity in undisturbed perhumid montane forest soils in Taiwan. Microb Ecol 59:369–378

    Article  PubMed  Google Scholar 

  65. Meng H, Li K, Nie M, Wan JR, Quan ZX, Fang CM, Chen JK, Gu JD, Li B (2013) Responses of bacterial and fungal communities to an elevation gradient in a subtropical montane forest of China. Appl Microbiol Biotechnol 97:2219–2230

    Article  PubMed  CAS  Google Scholar 

  66. Helfrich M, Ludwig B, Buurman P, Flessa H (2006) Effect of landuse on the composition of soil organic matter in density and aggregate fractions as revealed by solid-state 13C NMR spectroscopy. Geoderma 136:331–341

    Article  CAS  Google Scholar 

  67. Fernandez A (2015) Effects of cover crop and fertilizer incorporation on the structure and function of microbial communities in soils under long-term organic management. Dissertation, University of Minnesota.

  68. Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was funded by the Griffith University PhD scholarships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaling Zhang or Zhihong Xu.

Electronic supplementary material

ESM 1

(DOCX 183 kb)

ESM 2

(DOCX 17.2 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, M., Tang, L. et al. Long-Term Harvest Residue Retention Could Decrease Soil Bacterial Diversities Probably Due to Favouring Oligotrophic Lineages. Microb Ecol 76, 771–781 (2018). https://doi.org/10.1007/s00248-018-1162-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1162-8

Keywords

  • Forest plantation
  • Residue retention
  • Soil δ15N
  • Nuclear magnetic resonance
  • Bacterial composition
  • Bacterial diversity