Microbial Ecology

, Volume 76, Issue 3, pp 680–694 | Cite as

An Assessment of Sub-Meter Scale Spatial Variability of Arcellinida (Testate Lobose Amoebae) Assemblages in a Temperate Lake: Implications for Limnological Studies

  • Riley E. Steele
  • Nawaf A. Nasser
  • R. Timothy Patterson
  • Braden R. B. Gregory
  • Helen M. Roe
  • Eduard G. Reinhardt
Environmental Microbiology


Arcellinida (testate lobose amoebae), a group of benthic protists, were examined from 46 sediment-water interface samples collected from oligotrophic Oromocto Lake, New Brunswick, Canada. To assess (1) assemblage homogeneity at a sub-meter spatial scale and (2) the necessity for collecting samples from multiple stations during intra-lake surveys; multiple samples were collected from three stations (quadrats 1, 2, and 3) across the north basin of Oromocto Lake, with quadrat 1 (n = 16) being the furthest to the west, quadrat 2 (n = 15) situated closer to the center of the basin, and quadrat 3 (n = 15) positioned 300 m south of the mouth of Dead Brook, an inlet stream. Results from cluster analysis and non-metric multidimensional scaling (NMDS) analysis identified two major Arcellinida assemblages, A1 and A2, the latter containing two sub-assemblages (A2a and A2b). Redundancy analysis and variance partitioning results indicated that seven statistically significant environmental variables (K, S, Sb, Ti, Zn, Fe, and Mn) explained 41.5% of the total variation in the Arcellinida distribution. Iron, Ti and K, indicators of detrital runoff, had the greatest influence on assemblage variance. The results of this study reveal that closely spaced samples (~ 10 cm) in an open-water setting are comprised of homogenous arcellinidan assemblages, indicating that replicate sampling is not required. The results, however, must be tempered with respect to the various water properties and physical characteristics that comprise individual lakes as collection of several samples may likely be necessary when sampling multiple sites of a lake basin characterized by varying water depths (e.g., littoral zone vs. open water), or lakes impacted by geogenic or anthropogenic stressors (e.g., eutrophication, or industrial contamination).


Arcellinida Lake sediments New Brunswick Intra-lake survey Sub-meter scale sampling Multivariate analysis 



We thank Roy and Malcolm Patterson for their fieldwork assistance. Appreciation is also extended to J.J. Wang, Nano Imaging Facility in Carleton University for assistance in obtaining SEM images.


Funding for this research project was provided by NSERC Discovery and Carleton University Development grants awarded to RTP. Additional direct and in-kind funding was provided.

Supplementary material

248_2018_1157_MOESM1_ESM.xlsx (19 kb)
Supplementary Table 1 (XLSX 19 kb)
248_2018_1157_MOESM2_ESM.xlsx (19 kb)
Supplementary Table 2 (XLSX 19 kb)
248_2018_1157_MOESM3_ESM.docx (42 kb)
ESM 1 (DOCX 42 kb)


References 52-63 belong to the naming authorities of the Arcellinia species describe in this paper (e.g. Difflugia elegans (Penard 1890)). The naming authorities are writen following the guidelines of the International Code of Zoological Nomenclature (ICZN). We opted to list the references for these naming authorities at the end of the references list to avoid affecting the naming authorities by adding in-text citations.

  1. 1.
    Asioli A, Medioli FS, Patterson RT (1996) Thecamoebians as a tool for reconstruction of paleoenvironments in some Italian lakes in the foothills of the southern Alps (Orta, Varese and Candia). J Foraminifer Res 26:248–263CrossRefGoogle Scholar
  2. 2.
    Dalby AP, Kumar A, Moore JM, Patterson RT (2000) Utility of arcellaceans (thecamoebians) as paleolimnological indicators in tropical settings: Lake Sentani, Irian Jaya, Indonesia. J. Foraminifer. Res. 30:135–142CrossRefGoogle Scholar
  3. 3.
    Farooqui A, Kumar A, Swindles GT (2011) Thecamoebian communities as proxies of seasonality in Lake Sadatal in the Ganga-Yamuna Plains of North India. Palaeontol. Electron. 15:3A, 19 ppGoogle Scholar
  4. 4.
    Nasser NA, Patterson RT, Roe HM, Galloway JM, Falck H, Palmer MJ, Spence C, Sanei H, Macumber AL, Neville LA (2016) Lacustrine arcellina (testate amoebae) as bioindicators of arsenic contamination. Microb. Ecol. 72:130–149CrossRefPubMedGoogle Scholar
  5. 5.
    Neville LA, McCarthy FMG, MacKinnon MD (2010) Seasonal environmental and chemical impact on thecamoebian community composition in an Oil Sands reclamation wetland in Northern Alberta. Palaeontol. Electron. 13(2):13A, 14 ppGoogle Scholar
  6. 6.
    Patterson RT, Barker T, Burbidge SM (1996) Arcellaceans (thecamoebians) as proxies of arsenic and mercury contamination in northeastern Ontario lakes. J Foraminifer Res 26:172–183CrossRefGoogle Scholar
  7. 7.
    Patterson RT, Lamoureux EDR, Neville LA, Macumber AL (2013) Arcellacea (Testate Lobose Amoebae) as pH indicators in a pyrite mine-acidified lake, Northeastern Ontario, Canada. Microb. Ecol. 65:541–554CrossRefPubMedGoogle Scholar
  8. 8.
    Patterson RT, Kumar A (2000a) Assessment of arcellacean (thecamoebian) assemblages, species, and strains as contaminant indicators in James Lake, Northeastern Ontario, Canada. J Foraminifer Res 30:310–320CrossRefGoogle Scholar
  9. 9.
    Patterson RT, Kumar A (2000b) Use of arcellacea to gauge levels of pollution and remediation of industrially polluted lakes. In: Martin RE (ed) Environmental micropaleontology, v. 15 of topics in geobiology. Kluwer Academic/Plenum Publication, p. 257–278Google Scholar
  10. 10.
    Reinhardt EG, Dalby AP, Kumar A, Patterson RT (1998) Arcellaceans as pollution indicators in mine tailing contaminated lake near Cobalt, Ontario, Canada. Micropaleontology 44:131–148CrossRefGoogle Scholar
  11. 11.
    Roe HM, Patterson RT (2006) Distribution of thecamoebians (testate amoebae) in small lakes and ponds, Barbados, West Indies. J Foraminifer Res 36:116–134CrossRefGoogle Scholar
  12. 12.
    Roe H, Patterson RT, Swindles GT (2010) Controls on the contemporary distribution of lake thecamoebians (testate amoebae) within the Greater Toronto Area and their potential as water quality indicators. J. Paleolimnol. 43:955–975CrossRefGoogle Scholar
  13. 13.
    Medioli FS, Scott DB (1983) Holocene arcellecea (Thecamoebians) from eastern Canada. Cushman Foundation For Foraminiferal Research special Publication 21:5–43Google Scholar
  14. 14.
    Medioli, F.S., Scott, D.B., Collins, E.S., McCarthy, F.M.G., 1990a. Fossil thecamoebians: present status and prospects for the future. In: Hemleben, C., Kaminski, M.A., Kuhnt, W., Scott, D.B. (Eds.), Paleoecology, biostratigraphy, paleoceanography and taxonomy of agglutinated foraminifera. NATOAdvanced Study Institute Series, Series C, Mathematical and Physical Sciences 327:813–840Google Scholar
  15. 15.
    Medioli, F.S., Scott, D.B., Collins, E.S., Wall, J.H., 1990b. Thecamoebians from the early Cretaceous deposits of Ruby Creek, Alberta (Canada). In: Hemleben, C., Kaminski, M.A., Kuhnt, W., Scott, D.B. (Eds.), Paleoecology, biostratigraphy, paleoceanography and taxonomy of agglutinated foraminifera. NATOAdvance d Study Institute Series, Series C, Mathematical and Physical Sciences 327:793–812Google Scholar
  16. 16.
    Porter SA, Knoll AH (2000) Testate amoeba in the Neoproterozoic Era: evidence from vase-shaped microfossils in the chuar group, Grand Canyon. Paleobiology 26:360–385CrossRefGoogle Scholar
  17. 17.
    Gehrels WR, Roe HM, Charman DJ (2001) Foraminifera, testate amoebae, and diatoms as sea-level indicators in UK saltmarshes: a quantitative multiproxy approach. J. Quat. Sci. 16:210–220CrossRefGoogle Scholar
  18. 18.
    Roe HM, Patterson RT (2014) Arcellacea (testate amoebae) as bio-indicators of road salt contamination in lakes. Microb. Ecol. 68:299–313CrossRefPubMedGoogle Scholar
  19. 19.
    Patterson RT, Kumar A (2002) A review of current testate rhizopod (thecamoebian) research in Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 180:225–251CrossRefGoogle Scholar
  20. 20.
    Patterson RT, Roe HM, Swindles GT (2012) Development of an Arcellacea (testate lobose amoebae) based transfer function for sedimentary phosphorus in lakes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 348-349:32–44CrossRefGoogle Scholar
  21. 21.
    Galloway JM, Sanei H, Patterson RT, Mosstajiri, Hadlari T, Falck H (2012) Total arsenic concentrations of lake sediments near the City of Yellowknife, Northwest Territories. Geological Survey of Canada Open File 7037, 47 ppGoogle Scholar
  22. 22.
    Buzas MA, Hayek LC, Jett JA, Reed SA (2015) Pulsating patches: history and analysis of spatial, seasonal, and yearly distribution of living benthic foraminifera. Smithsonian Institution Scholarly Press 97:91Google Scholar
  23. 23.
    Pronk AG, and Allard S. (2003). Landscape map of New Brunswick. New Brunswick Division, Map NR-9 (scale 1 : 440 000)Google Scholar
  24. 24.
    Gregory BR, Reinhardt EG, Macumber AL, Nasser NA, Patterson RT, Kovacs SE, Galloway JM (2017) Sequential sample reservoirs for Itrax-XRF analysis of discrete samples. J. Paleolimnol. 57:287–293CrossRefGoogle Scholar
  25. 25.
    Croudace IW, Rindby A, Rothwell RG (2006) ITRAX: description and evaluation of a new multi-function X-ray core scanner. In: Geological Society of London, Special Publication 267:51–63.Google Scholar
  26. 26.
    Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25:101–110CrossRefGoogle Scholar
  27. 27.
    Murray A (2002) Is laser particle size determination possible for carbonate-rich lake sediments? J. Paleolimnol. 27:173–183CrossRefGoogle Scholar
  28. 28.
    Blott SJ, Pye K (2001) GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 26:1237–1248CrossRefGoogle Scholar
  29. 29.
    Scott DB, Hermelin JOR (1993) A device for precision splitting of micropaleontological samples in liquid suspension. J. Paleontol. 67:151–154CrossRefGoogle Scholar
  30. 30.
    Patterson RT, Fishbein A (1989) Re-examination of the statistical methods used to determine the number of point counts needed for micropaleontological quantitative research. J. Paleontol. 63:245–248CrossRefGoogle Scholar
  31. 31.
    Cullen J (2016) Lacustrine intra-basinal Arcellinidan (Testate Lobose Amoeba) assemblage dynamics: implications for paleontological reconstruction (Honours Thesis, Carleton University, Ottawa)Google Scholar
  32. 32.
    Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423 and 623–656CrossRefGoogle Scholar
  33. 33.
    Reimann C, Filzmoser P, Garrett RG, Dutter R (2008) Statistical data analysis explained: applied environmental statistics with R. Wiley, Chichester, 343 pp.Google Scholar
  34. 34.
    Ward JH (1963) Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58:236–244CrossRefGoogle Scholar
  35. 35.
    Fishbein E, Patterson RT (1993) Error-weighted maximum likelihood (EWML): a new statistically based method to cluster quantitative micropaleontological data. J. Paleontol. 67:475–485CrossRefGoogle Scholar
  36. 36.
    Kruskal JB (1964) Non-metric multidimensional scaling: A numerical method. Psychometrika 29:115–129CrossRefGoogle Scholar
  37. 37.
    van den Wollenberg AL (1977) Redundancy analysis. An alternative for canonical correlation analysis. Psychometrika 42:207–219CrossRefGoogle Scholar
  38. 38.
    Patterson RT, MacKinnon KD, Scott DB, Medioli FS (1985) Arcellaceans (“Thecamoebians”) in small lakes of New Brunswick and Nova Scotia: modern distribution and Holocene stratigraphic changes. J Foraminifer Res 15:114–137CrossRefGoogle Scholar
  39. 39.
    Imboden DM, Lemmin U, Joller T, Schurter M (1983) Mixing processes in lakes: mechanisms and ecological relevance. Schweiz. Z. Hydrol. 45:11–44Google Scholar
  40. 40.
    Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432CrossRefGoogle Scholar
  41. 41.
    Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton, p 185CrossRefGoogle Scholar
  42. 42.
    Prentice SV, Roe HM, Bennion H, Sayer CD, Salgado J (2017) Refining the palaeoecology of lacustrine testate amoebae: insights from a plant macrofossil record from a eutrophic Scottish Lake. J Paleolimnol 1–19.
  43. 43.
    Boës X, Rydberg J, Martinez-Cortizas A, Bindler R, Renberg I (2011) Evaluation of conservative lithogenic elements (Ti, Zr, Al, and Rb) to study anthropogenic element enrichments in lake sediments. J. Paleolimnol. 46:75–87CrossRefGoogle Scholar
  44. 44.
    LoDico JM, Flower BP, Quinn TM (2006) Subcentennial-scale climatic and hydrologic variability in the Gulf of Mexico during the early Holocene. Paleoceanography 21:PA3015CrossRefGoogle Scholar
  45. 45.
    Davies SJ, Lamb HF, Roberts SJ (2015) Micro-XRF core scanning in palaeolimnology: recent developments. In: Rothwell RG, Croudace IW (eds) Micro-XRF studies of sediment cores: Applications of a non-destructive tool for the environmental sciences. Springer, Dordrecht, pp 189–226 (Developments in Paleoenvironmental Research, 17)CrossRefGoogle Scholar
  46. 46.
    Hebbeln D, Scheurle C, Lamy F (2003) Depositional history of the Helgoland mud area, German Bight, North Sea. Geo-Mar. Lett. 23:81–90CrossRefGoogle Scholar
  47. 47.
    Rothwell RG, Croudace IW (2015) Twenty years of XRF core scanning marine sediments: what do geochemical proxies tell us? In: Rothwell RG, Croudace IW (eds) Micro-XRF studies of sediment cores: application of a non-destructive tool for the environmental sciences. Springer, Dordrecht, pp 25–102CrossRefGoogle Scholar
  48. 48.
    Picard C, Bosco M (2003) Soil antimony pollution and plant growth stage affect the biodiversity of auxin-producing bacteria isolated from the rhizosphere of Achillea ageratum L. FEMS Microbiol. Ecol. 46:73–80CrossRefPubMedGoogle Scholar
  49. 49.
    Delfino JJ, Bortleson GC, Lee GF (1968) Distribution of Mn, Fe, P, Mg, K, Na, and Ca in the surface sediments of Lake Mendota, Wisconsin. Environ. Sci. Technol. 3:1189–1192 CrossRefGoogle Scholar
  50. 50.
    Robb C (1870) Report of Mr. Charles Robb, addressed to Sir William Logan, F.R.S., F.G.S., Director of the Geological Survey in Report of Progress From 1866 to 1869 Accompanied by Geological and Topographical Maps. Dawson Bros. Montreal p. 173–209. Google Scholar
  51. 51.
    Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw. Biol. 46:431–451CrossRefGoogle Scholar

Further Reading

  1. 52.
    Carter HJ (1856) Notes on the freshwater Infusoria of the island of Bombay. Ann. Mag. Nat. Hist. 18(104):115–132CrossRefGoogle Scholar
  2. 53.
    Carter HJ (1864) On freshwater Rhizopoda of England and India. Ann Mag Nat Hist Ser 3(13):18–39CrossRefGoogle Scholar
  3. 54.
    Deflandre G (1929) Le genre Centropyxis Stein. Arch. Protistenkd. 67:323–375Google Scholar
  4. 55.
    Ehrenberg CG (1830) Organisation, systematik und geographisches Verhältnis der Infusionsthierchen. Königl Akad Wiss, BerlinGoogle Scholar
  5. 56.
    Ehrenberg CG (1832) Über die Entwicklung und Lebensdauer der Infusionsthiere, nebst ferneren Beiträgen zu einer Vergleichung ihrer organischen Systeme. Abh Akad Wiss Berlin 1831:1–154Google Scholar
  6. 57.
    Ehrenberg CG (1840) Das grössere Infusorienwerke. Abh Akad Wiss Berlin:198–219Google Scholar
  7. 58.
    Ehrenberg CG (1843) Verbreitung und Einfluss des mikroskopischen Lebens in Süd-und Nord Amerika. Königl Preufs Akad Wiss Berlin 1841:181Google Scholar
  8. 59.
    Hempel A (1898) A list of the Protozoa and Rotifera found in the Illinois River and adjacent lakes at Havana, Ill. Ill State Lab Nat Hist Bull 5:301–388Google Scholar
  9. 60.
    Leidy J (1874) Notice of some fresh-water and terrestrial rhizopods. Proc Acad Nat Sci Phila 26:86–88Google Scholar
  10. 61.
    Penard E (1890) Catalog der nackten und schalentragenden Rhizopoden von Wiesbaden. Jarbuch der nassavischen Vereins für Naturkunde 43:67–72Google Scholar
  11. 62.
    Penard E (1902) Faune Rhizopodique du Bassin du Lèman. Henry Kündig. Libraire de L’institut, Genéve, p 712Google Scholar
  12. 63.
    Wallich GC (1864) On the process of mineral deposit in the rhizopods and sponges, as affording a distinctive character. Ann Mag Nat Hist Ser 3(13):72–82CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Riley E. Steele
    • 1
  • Nawaf A. Nasser
    • 1
  • R. Timothy Patterson
    • 1
  • Braden R. B. Gregory
    • 1
  • Helen M. Roe
    • 2
  • Eduard G. Reinhardt
    • 3
  1. 1.Ottawa-Carleton Geoscience Centre and Department of Earth SciencesCarleton UniversityOttawaCanada
  2. 2.School of Natural and Built EnvironmentQueen’s UniversityBelfastUK
  3. 3.School of Geography and Earth SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations