Community Structure of Endophytic Actinobacteria in a New Zealand Native Medicinal Plant Pseudowintera colorata (Horopito) and Their Influence on Plant Growth

  • Neeraj Purushotham
  • Eirian Jones
  • Jana Monk
  • Hayley Ridgway
Plant Microbe Interactions

Abstract

The role of plant endophytic Actinobacteria remains poorly understood with no reports of these communities in New Zealand native plants. This first investigation of endophytic Actinobacteria in New Zealand targeted the culturally significant medicinal shrub Pseudowintera colorata (horopito) as a model plant. Community analysis in plant tissues collected from ten geographically distinct sites showed that tissue type had the strongest influence on diversity and richness of endophytic Actinobacteria. More denaturing gradient gel electrophoresis (DGGE) bands were obtained from stems (n = 18) compared to roots (n = 13). Sequencing analysis of the major bands (n = 20) identified them as uncultured bacteria, Streptomyces sp. and Angustibacter peucedani. Using two Actinobacteria-specific media, nine isolates were recovered from surface-sterilised P. colorata tissues. This was approximately 12% of the total taxa and correlated well with culturable numbers in international studies. In vitro analysis of the functionality of these strains showed that Streptomyces sp. PRY2RB2 inhibited all the tested phytopathogenic fungi (n = 4), Streptomyces sp. UKCW/B and Nocardia sp. TP1BA1B solubilised phosphate and produced siderophores. The functionality of the phosphate solubilising strains (n = 2) in vivo was investigated by inoculation of P. colorata seedlings. After 4 months, the mean shoot height of seedlings treated with Nocardia sp. TP1BA1B was 1.65× longer, had higher shoot dry weight (1.6×) and number of internodes (1.67×) compared to control. This study identified for the first time a key group of endophytic Actinobacteria that are likely to be important in the ecology of New Zealand flora.

Keywords

Plant-microbe interaction Phytopathogens Growth promotion Microbial communities 

Abbreviations

PRY2RB2

isolate from Paringa Forest root sample

UKCW/B

isolate from Paringa Forest root sample

DGGE

denaturing gradient gel electrophoresis

TP1BA1B

isolate from Taihape Scenic Reserve stem sample

Notes

Acknowledgements

The authors thank Lincoln University for funding this research and New Zealand Department of Conservation (DOC) for permission to collect samples. The first author (NP) was funded through NZAID Commonwealth scholarship administered by the New Zealand Ministry of Foreign Affairs and Trade (MFAT).

Supplementary material

248_2018_1153_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 23 kb)

References

  1. 1.
    Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium44 bromide. Nat Protoc 1:2320–2325CrossRefPubMedGoogle Scholar
  2. 2.
    Bashan Y, Kamnev AA, de Bashan LE (2013) A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth. Biol Fertil Soils 49:1–2CrossRefGoogle Scholar
  3. 3.
    Berdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395CrossRefPubMedGoogle Scholar
  4. 4.
    Brooker SG, Cambie RC, Cooper RC (1987) New Zealand medicinal plants. Heinemann publishers, Auckland, p 268Google Scholar
  5. 5.
    Cao L, Qiu Z, You J, Tan H, Zhou S (2004) Isolation and characterization of endophytic Streptomyces strains from surface-sterilized tomato (Lycopersicon esculentum) roots. Lett Appl Microbiol 39:425–430CrossRefPubMedGoogle Scholar
  6. 6.
    Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N (2016) Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2:16242CrossRefPubMedGoogle Scholar
  7. 7.
    Conn VM, Franco CMM (2004) Effect of microbial inoculants on the indigenous Actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Appl Environ Microbiol 70:6407–6413CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Coombs JC, Franco CMM (2003) Visualization of an endophytic Streptomyces species in wheat seed. Appl Environ Microbiol 69:4260–4262CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Costa FG, Zucchi TD, de Melo IS (2013) Biological control of phytopathogenic fungi by endophytic actinomycetes isolated from maize (Zea mays L.). Braz Arch Biol Technol 56:9487–9955CrossRefGoogle Scholar
  10. 10.
    El-Shatoury SA, El-Kraly OA, Trujillo ME, El-Kazzaz WM, El-Din E-SG, Dewedar A (2013) Generic and functional diversity in endophytic actinomycetes from wild Compositae plant species at South Sinai—Egypt. Res Microbiol 164:761–769CrossRefPubMedGoogle Scholar
  11. 11.
    El-Tarabily KA, Nassar AH, Hardy GE St J, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26CrossRefPubMedGoogle Scholar
  12. 12.
    Ernawati M, Solihin DD, Lestari Y (2015) Community structures of endophytic Actinobacteria from medicinal plant Centella asiatica L. urban-based on metagenomics approach. Int. J Pharm Sci 8:292–297Google Scholar
  13. 13.
    Frey-Klett P, Chavatte M, Clausse M-L, Courrier S, Roux CL, Raaijmakers J et al (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328CrossRefPubMedGoogle Scholar
  14. 14.
    Golinska P, Zucchi TD, Silva L, Dahm H, Goodfellow M (2015) Actinospica durhamensis sp. nov., isolated from a spruce forest soil. Antonie Leeuwenhoek 108:435–442CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Goudjal Y, Toumatia O, Yekkour A, Sabaou N, Mathieu F, Zitouni A (2014) Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiol Res 169:59–65CrossRefPubMedGoogle Scholar
  16. 16.
    Hardoim PR, van Overbeek LS, Berg G, Pirtilla AM, Compant S, Campisano A et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hasegawa S, Meguro A, Nishimura T, Kunoh H (2004) Drought tolerance of tissue-cultured seedlings of mountain laurel (Kalmia latifolia L.) induced by an endophytic actinomycete. I. Enhancement of osmotic pressure in leaf cells. Actinomycetologica 18:43–47CrossRefGoogle Scholar
  18. 18.
    Igarashi Y, Iida T, Sasaki T, Saito N, Yoshida R, Furumai T (2002) Isolation of actinomycetes from live plants and evaluation of antiphytopathogenic activity of their metabolites. Actinomycetologica 16:9–13CrossRefGoogle Scholar
  19. 19.
    Janso JE, Carter GT (2010) Phylogenetically unique endophytic actinomycetes from tropical plants possess great biosynthetic potential. Appl Environ Microbiol 76:4377–4386CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kaewkla O, Franco CMM (2013) Rational approaches to improving the isolation of endophytic Actinobacteria from Australian native trees. Microb Ecol 65:384–393CrossRefPubMedGoogle Scholar
  21. 21.
    Kubo I, Fujita K, Lee SH (2001) Antifungal mechanism of polygodial. J Agric Food Chem 49:1607–1611CrossRefPubMedGoogle Scholar
  22. 22.
    Kubo I, Fujita K, Lee SH, Ha TJ (2005) Antibacterial activity of polygodial. Phytother Res 19:1013–1017CrossRefPubMedGoogle Scholar
  23. 23.
    Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One 8(9):e71805CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Li J, Zhao GZ, Varma A, Qin S, Xiong Z, Huang HY et al (2012) An endophytic Pseudonocardia species induces the production of artemisinin in Artemisia annua. PLoS One 7(12):e51410CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mercado-Blanco J, Lugtenberg BJJ (2014) Biotechnological applications of bacterial endophytes. Curr Biotechnol 3:60–75CrossRefGoogle Scholar
  26. 26.
    Misk A, Franco CMM (2011) Biocontrol of chickpea root rot using endophytic actinobacteria. BioControl 56:811–822CrossRefGoogle Scholar
  27. 27.
    Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Leeuwenhoek 73:127–141CrossRefPubMedGoogle Scholar
  28. 28.
    Nimnoi P, Pongsilp N, Lumyong S (2010) Endophytic actinomycetes isolated from Aquilaria crassna Pierre ex Lec and screening of plant growth promoters production. World J Microbiol Biotechnol 26:193–203CrossRefGoogle Scholar
  29. 29.
    Nimnoi P, Pongsilp N, Lumyong S (2011) Actinobacterial community and diversity in rhizosphere soils of Aquilaria crassna Pierre ex Lec assessed by RT-PCR and PCR-DGGE. Biochem Syst Ecol 39:509–519CrossRefGoogle Scholar
  30. 30.
    Passari AK, Mishra VK, Saikia R, Gupta VK, Singh BP (2015) Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front Microbiol 6:273CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Perry NB, Burgess EJ, Lorimer SD, van Klink JW (1996) Fatty acid anilides as internal standards for high performance liquid chromatographic analyses of Valeriana officinalis L. and other medicinal plants. Phytochem Anal 7:263–268CrossRefGoogle Scholar
  32. 32.
    Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315CrossRefPubMedGoogle Scholar
  33. 33.
    Qin S, Wang HB, Chen HH, Zhang YQ, Jiang CL, Xu LH et al (2008) Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int J Syst Evol Microbiol 58:2525–2528CrossRefPubMedGoogle Scholar
  34. 34.
    Qin S, Xing K, Jiang JH, Xu LH, Li WJ (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473CrossRefPubMedGoogle Scholar
  35. 35.
    Qin S, Zhang YJ, Yuan B, Xu PY, Xing K, Wang J, Jiang JH (2014) Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth- promoting activity under salt stress. Plant Soil 374:753–766CrossRefGoogle Scholar
  36. 36.
    Qin S, Miao Q, Feng W-W, Wang Y, Zhu X, Xing K et al (2015) Biodiversity and plant growth promoting traits of culturable endophytic actinobacteria associated with Jatropha curcas L. growing in Panxi dry-hot valley soil. Appl Soil Ecol 93:47–55CrossRefGoogle Scholar
  37. 37.
    Rai M, Agarkar G, Rathod D (2014) Multiple applications of endophytic Colletotrichum species occurring in medicinal plants, in novel plant bioresources: applications in food, medicine and cosmetics. In: Gurib-Fakim A (ed) Novel plant bioresources. Wiley, Chichester, pp 227–236CrossRefGoogle Scholar
  38. 38.
    Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A (2012) Plant growth enhancing effects by a siderophore- producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Leeuwenhoek 102:463–472CrossRefPubMedGoogle Scholar
  39. 39.
    Salam N, Khieu T-N, Liu M-J, Vu T-T, Chu-Ky S, Quanch N-T et al (2017) Endophytic Actinobacteria associated with Dracaena cochinchinensis Lour.: isolation, diversity, and their cytotoxic activities. BioMed Res Int Article ID 1308563, 11 pagesGoogle Scholar
  40. 40.
    Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56CrossRefPubMedGoogle Scholar
  41. 41.
    Stark C, Condron LM, Stewart A, Di HJ, O’Callaghan M (2007) Influence of organic and mineral amendments on microbial soil properties and processes. Appl Soil Ecol 35:79–93CrossRefGoogle Scholar
  42. 42.
    Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew. Science 260:214–216CrossRefPubMedGoogle Scholar
  43. 43.
    Sun Og L, Ja Choi G, Ho Choi Y, Soo Jang K, Park D-J, Kim C-J, Kim J-C (2008) Isolation and characterization of endophytic Actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. J Microbiol Biotechnol 18:1741–1746Google Scholar
  44. 44.
    Taurian T, Anzuay MS, Angelini JG, Tonelli ML, Ludeňa L, Pena D et al (2010) Phosphate-solubilizing peanut associated bacteria: screening for plant growth promoting activities. Plant Soil 329:421–431CrossRefGoogle Scholar
  45. 45.
    Tian X, Cao L, Tan H, Han W, Chen M, Liu Y et al (2007) Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice. Microb Ecol 53:700–707CrossRefPubMedGoogle Scholar
  46. 46.
    Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141CrossRefPubMedGoogle Scholar
  48. 48.
    Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth potential of siderophore producing endophytic Streptomyces from Azadirachta indica a. Juss. J Basic Microbiol 51:550–556CrossRefPubMedGoogle Scholar
  49. 49.
    Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Wayman KA, de Lange PJ, Larsen L, Sansom CE, Perry NB (2010) Chemotaxonomy of Pseudowintera: sesquiterpene dialdehyde variants are species markers. Phytochemistry 71:766–772CrossRefPubMedGoogle Scholar
  51. 51.
    Wicaksono WA, Jones EE, Monk J, Ridgway HJ (2016) The bacterial signature of Leptospermum scoparium (Mānuka) reveals core and accessory communities with bioactive properties. PLoS One 11(9):e0163717CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pest-management and Conservation, Faculty of Agriculture and Life SciencesLincoln UniversityLincolnNew Zealand
  2. 2.AgResearchChristchurchNew Zealand
  3. 3.AsureQualityChristchurchNew Zealand
  4. 4.Plant & Food Research LtdChristchurchNew Zealand

Personalised recommendations