Longitudinal Effects of Supplemental Forage on the Honey Bee (Apis mellifera) Microbiota and Inter- and Intra-Colony Variability

Abstract

Honey bees (Apis mellifera) provide vital pollination services for a variety of agricultural crops around the world and are known to host a consistent core bacterial microbiome. This symbiotic microbial community is essential to many facets of bee health, including likely nutrient acquisition, disease prevention and optimal physiological function. Being that the bee microbiome is likely involved in the digestion of nutrients, we either provided or excluded honey bee colonies from supplemental floral forage before being used for almond pollination. We then used 16S rRNA gene sequencing to examine the effects of forage treatment on the bees’ microbial gut communities over four months. In agreement with previous studies, we found that the honey bee gut microbiota is quite stable over time. Similarly, we compared the gut communities of bees from separate colonies and sisters sampled from within the same hive over four months. Surprisingly, we found that the gut microbial communities of individual sisters from the same colony can exhibit as much variation as bees from different colonies. Supplemental floral forage had a subtle effect on the composition of the microbiome during the month of March only, with strains of Gilliamella apicola, Lactobacillus, and Bartonella being less proportionally abundant in bees exposed to forage in the winter. Collectively, our findings show that there is unexpected longitudinal variation within the gut microbial communities of sister honey bees and that supplemental floral forage can subtly alter the microbiome of managed honey bees.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Klein A-M, Vaissière BE, Cane JH et al (2007) Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 274:303–313. https://doi.org/10.1098/rspb.2006.3721

    Article  PubMed  Google Scholar 

  2. 2.

    Calderone NW (2012) Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS One 7:e37235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. 3.

    Martinson VG, Danforth BN, Minckley RL et al (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20:619–628. https://doi.org/10.1111/j.1365-294X.2010.04959.x

    Article  PubMed  Google Scholar 

  4. 4.

    Moran NA, Hansen AK, Powell JE, Sabree ZL (2012) Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One 7:e36393. https://doi.org/10.1371/journal.pone.0036393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. 5.

    Kwong WK, Medina LA, Koch H et al (2017) Dynamic microbiome evolution in social bees. Sci. Adv. 3:e1600513. https://doi.org/10.1126/sciadv.1600513

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Powell JE, Martinson VG, Urban-Mead K, Moran NA (2014) Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol. 80:7378–7387. https://doi.org/10.1128/AEM.01861-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Anderson KE, Rodrigues PAP, Mott BM et al (2015) Ecological succession in the honey bee gut: shift in Lactobacillus strain dominance during early adult development. Microb. Ecol. 71:1008–1019. https://doi.org/10.1007/s00248-015-0716-2

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad. Sci. U. S. A. 109:11002–11007. https://doi.org/10.1073/pnas.1202970109

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Zheng H, Nishida A, Kwong WK et al (2016) Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. MBio 7:e01326–e01316. https://doi.org/10.1128/mBio.01326-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. 10.

    Kwong WK, Mancenido AL, Moran NA (2017) Immune system stimulation by the native gut microbiota of honey bees. R Soc Open Sci 4:170003. https://doi.org/10.1098/rsos.170003

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Schwarz RS, Moran NA, Evans JD (2016) Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. Proc. Natl. Acad. Sci. U. S. A. 113:9345–9350. https://doi.org/10.1073/pnas.1606631113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Corby-Harris V, Snyder L, Meador CAD et al (2016) Parasaccharibacter apium, gen. Nov., sp. nov., improves honey bee (hymenoptera: Apidae) resistance to Nosema. J. Econ. Entomol. 109:537–543. https://doi.org/10.1093/jee/tow012

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Zheng H, Powell JE, Steele MI et al (2017) Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl. Acad. Sci. U. S. A. 114:4775–4780. https://doi.org/10.1073/pnas.1701819114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Mao W, Schuler MA, Berenbaum MR (2013) Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proc. Natl. Acad. Sci. U. S. A. 110:8842–8846. https://doi.org/10.1073/pnas.1303884110

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Oldroyd BP (2007) What’s killing American honey bees? PLoS Biol. 5:e168. https://doi.org/10.1371/journal.pbio.0050168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Wheeler MM, Robinson GE (2014) Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup. Sci Rep 4:5726. https://doi.org/10.1038/srep05726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Johnson RM, Mao W, Pollock HS et al (2012) Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera. PLoS One 7:e31051. https://doi.org/10.1371/journal.pone.0031051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. 18.

    Kwong WK, Moran NA (2013) Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. Nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. Nov., sp. nov., a member of Orbaceae fam. Nov., Orbales ord. Nov., a sister taxon to the order 'Enterobacteriales' of the Gammaproteobacteria. Int. J. Syst. Evol. Microbiol. 63:2008–2018. https://doi.org/10.1099/ijs.0.044875-0

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Engel P, Kwong WK, Moran NA (2013) Frischella perrara gen. Nov., sp. nov., a gammaproteobacterium isolated from the gut of the honeybee, Apis mellifera. Int. J. Syst. Evol. Microbiol. 63:3646–3651. https://doi.org/10.1099/ijs.0.049569-0

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Olofsson TC, Alsterfjord M, Nilson B et al (2014) Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int. J. Syst. Evol. Microbiol. 64:3109–3119. https://doi.org/10.1099/ijs.0.059600-0

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Maes P, Rodrigues P, Oliver R et al (2016) Diet related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honey bee Apis mellifera. Mol. Ecol. 25:5439–5450. https://doi.org/10.1111/mec.13862

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Carding S, Verbeke K, Vipond DT et al (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Heal Dis 26:26191. https://doi.org/10.3402/mehd.v26.26191

    Article  Google Scholar 

  23. 23.

    Brown K, DeCoffe D, Molcan E, Gibson DL (2012) Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 4:1095–1119. https://doi.org/10.3390/nu4081095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Faust K, Sathirapongsasuti JF, Izard J et al (2012) Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8:e1002606. https://doi.org/10.1371/journal.pcbi.1002606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Faust K, Lahti L, Gonze D et al (2015) Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr. Opin. Microbiol. 25:56–66. https://doi.org/10.1016/j.mib.2015.04.004

    Article  PubMed  Google Scholar 

  26. 26.

    Gerber GK (2014) The dynamic microbiome. FEBS Lett. 588:4131–4139. https://doi.org/10.1016/j.febslet.2014.02.037

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Lax S, Smith DP, Hampton-Marcell J et al (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345(80):1048–1052. https://doi.org/10.1126/science.1254529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Engel P, Kwong WK, McFrederick QS et al (2016) The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. MBio 7:e02164–e02115. https://doi.org/10.1128/mBio.02164-15

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  29. 29.

    Carroll MJ, Meikle WG, McFrederick QS, et al (2017) Supplemental forage improves colony survival and alters queen pheromone signaling in Nosema-infected overwintering colonies. Rev

  30. 30.

    Engel P, James RR, Koga R et al (2013) Standard methods for research on Apis mellifera gut symbionts. J. Apic. Res. 52:1–24. https://doi.org/10.3896/IBRA.1.52.4.07

    Article  Google Scholar 

  31. 31.

    McFrederick QS, Rehan SM (2016) Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Mol. Ecol. 25:2302–2311. https://doi.org/10.1111/mec.13608

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Kembel SW, O’Connor TK, Arnold HK et al (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. U. S. A. 111:13715–13720. https://doi.org/10.1073/pnas.1216057111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. 33.

    Hanshew AS, Mason CJ, Raffa KF, Currie CR (2013) Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. J. Microbiol. Methods 95:149–155. https://doi.org/10.1016/j.mimet.2013.08.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Chakravorty S, Helb D, Burday M et al (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods 69:330–339. https://doi.org/10.1016/j.mimet.2007.02.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Mercier C, Boyer F, Bonin A, Coissac E (2013) SUMATRA and SUMACLUST: fast and exact comparison and clustering of sequences. Programs Abstr SeqBio 2013 Work Abstr 27–29 . doi: https://doi.org/10.1002/ejoc.201200111

  38. 38.

    Raymann K, Shaffer Z, Moran NA (2017) Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 15:e2001861. https://doi.org/10.1371/journal.pbio.2001861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. 39.

    Ludvigsen J, Rangberg A, Avershina E et al (2015) Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season. Microbes Environ. 30:235–244. https://doi.org/10.1264/jsme2.ME15019

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    McDonald D, Price MN, Goodrich J et al (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618. https://doi.org/10.1038/ismej.2011.139

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. 42.

    Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J. Mol. Biol. 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Caporaso JG, Bittinger K, Bushman FD et al (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267. https://doi.org/10.1093/bioinformatics/btp636

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72:5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. 45.

    Price MN, Dehal PS, Arkin AP (2010) FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. 46.

    McDonald D, Clemente JC, Kuczynski J et al (2012) The biological observation matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. Gigascience 1:7. https://doi.org/10.1186/2047-217X-1-7

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71:8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. 48.

    R Core Team (2017) R: A language and environment for statistical computing

  49. 49.

    Oksanen J, Blanchet FG, Friendly M, et al (2017) vegan: Community Ecology Package

  50. 50.

    Wickham H (2009) ggplot2: Elegant graphics for data analysis

  51. 51.

    Paulson JN, Stine OC, Bravo HC, Pop M (2013) Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10:1200–1202. https://doi.org/10.1038/nmeth.2658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. 52.

    Martinson VG, Moy J, Moran NA (2012) Establishment of characteristic gut bacteria during development of the honeybee worker. Appl. Environ. Microbiol. 78:2830–2840. https://doi.org/10.1128/AEM.07810-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. 53.

    Tinker KA, Ottesen EA (2016) The core gut microbiome of the American cockroach, Periplaneta americana, is stable and resilient to dietary shifts. Appl. Environ. Microbiol. 82:6603–6610. https://doi.org/10.1128/AEM.01837-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. 54.

    Sanders JG, Powell S, Kronauer DJC et al (2014) Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Mol. Ecol. 23:1268–1283. https://doi.org/10.1111/mec.12611

    Article  PubMed  Google Scholar 

  55. 55.

    Hroncova Z, Havlik J, Killer J et al (2015) Variation in honey bee gut microbial diversity affected by ontogenetic stage, age and geographic location. PLoS One 10:e0118707. https://doi.org/10.1371/journal.pone.0118707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. 56.

    Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384. https://doi.org/10.1038/nrmicro.2016.43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. 57.

    Kapheim KM, Rao VD, Yeoman CJ et al (2015) Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS One 10:e0123911. https://doi.org/10.1371/journal.pone.0123911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. 58.

    Corby-Harris V, Maes P, Anderson KE (2014) The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS One 9:e95056. https://doi.org/10.1371/journal.pone.0095056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. 59.

    Jack CJ, Lucas HM, Webster TC, Sagili RR (2016) Colony level prevalence and intensity of Nosema ceranae in honey bees (Apis mellifera L.). PLoS One 11:e0163522. https://doi.org/10.1371/journal.pone.0163522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. 60.

    Emery O, Schmidt K, Engel P (2017) Immune system stimulation by the gut symbiont Frischella perrara in the honey bee ( Apis Mellifera ). Mol. Ecol. 26:2576–2590. https://doi.org/10.1111/mec.14058

    Article  PubMed  CAS  Google Scholar 

  61. 61.

    Powell E, Ratnayeke N, Moran NA (2016) Strain diversity and host specificity in a specialized gut symbiont of honeybees and bumblebees. Mol. Ecol. 25:4461–4471. https://doi.org/10.1111/mec.13787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. 62.

    Tarpy DR, Nielsen D (2002) Sampling error, effective paternity, and estimating the genetic structure of honey bee colonies (hymenoptera: Apidae). Ann. Entomol. Soc. Am. 95:513–528. https://doi.org/10.1603/0013-8746(2002)095[0513:SEEPAE]2.0.CO;2

  63. 63.

    Anderson KE, Ricigliano VA (2017) Honey bee gut dysbiosis: A novel context of disease ecology. Curr Opin Insect Sci In Press: . doi: https://doi.org/10.1016/j.cois.2017.05.020

  64. 64.

    Zhou T, Li L, Zhang X et al (2016) Changes in organic carbon and nitrogen in soil with metal pollution by cd, cu, Pb and Zn: a meta-analysis. Eur. J. Soil Sci. 67:237–246. https://doi.org/10.1111/ejss.12327

    Article  CAS  Google Scholar 

  65. 65.

    Cornman RS, Tarpy DR, Chen Y et al (2012) Pathogen webs in collapsing honey bee colonies. PLoS One 7:e43562. https://doi.org/10.1371/journal.pone.0043562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. 66.

    Runckel C, Flenniken ML, Engel JC et al (2011) Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS One 6:e20656. https://doi.org/10.1371/journal.pone.0020656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. 67.

    Kakumanu ML, Reeves AM, Anderson TD et al (2016) Honey bee gut microbiome is altered by in-hive pesticide exposures. Front. Microbiol. 7:1255. https://doi.org/10.3389/fmicb.2016.01255

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Pătruică S, Mot D (2012) The effect of using prebiotic and probiotic products on intestinal micro-flora of the honeybee (Apis mellifera carpatica). Bull. Entomol. Res. 102:619–623. https://doi.org/10.1017/S0007485312000144

    Article  PubMed  CAS  Google Scholar 

  69. 69.

    Billiet A, Meeus I, Van Nieuwerburgh F et al (2015) Impact of sugar syrup and pollen diet on the bacterial diversity in the gut of indoor-reared bumblebees (Bombus terrestris). Apidologie 47:1–13. https://doi.org/10.1007/s13592-015-0399-1

    CAS  Article  Google Scholar 

  70. 70.

    Pennington MJ, Rothman JA, Jones MB et al (2017) Effects of contaminants of emerging concern on Megaselia scalaris (Lowe, Diptera: Phoridae) and its microbial community. Sci. Rep. 7:8165. https://doi.org/10.1038/s41598-017-08683-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. 71.

    Pennington MJ, Rothman JA, Dudley SL, et al (2017) Contaminants of emerging concern affect Trichoplusia ni growth and development on artificial diets and a key host plant. Proc Natl Acad Sci. USA doi: https://doi.org/10.1073/pnas.1713385114

  72. 72.

    Yun J-H, Roh SW, Whon TW et al (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80:5254–5264. https://doi.org/10.1128/AEM.01226-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. 73.

    Lee FJ, Rusch DB, Stewart FJ et al (2015) Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ. Microbiol. 17:796–815. https://doi.org/10.1111/1462-2920.12526

    Article  PubMed  CAS  Google Scholar 

  74. 74.

    McFrederick QS, Wcislo WT, Taylor DR et al (2012) Environment or kin: whence do bees obtain acidophilic bacteria? Mol. Ecol. 21:1754–1768. https://doi.org/10.1111/j.1365-294X.2012.05496.x

    Article  PubMed  Google Scholar 

  75. 75.

    McFrederick QS, Thomas JM, Neff JL et al (2017) Flowers and wild megachilid bees share microbes. Microb. Ecol. 73:188–200. https://doi.org/10.1007/s00248-016-0838-1

    Article  PubMed  Google Scholar 

  76. 76.

    Anderson KE, Sheehan TH, Mott BM et al (2013) Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One 8:e83125. https://doi.org/10.1371/journal.pone.0083125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. 77.

    Rokop ZP, Horton MA, Newton ILG (2015) Interactions between cooccurring lactic acid bacteria in honey bee hives. Appl. Environ. Microbiol. 81:7261–7270. https://doi.org/10.1128/AEM.01259-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. 78.

    Davenport ER, Mizrahi-Man O, Michelini K et al (2014) Seasonal variation in human gut microbiome composition. PLoS One 9:e90731. https://doi.org/10.1371/journal.pone.0090731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. 79.

    Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(80):105–109. https://doi.org/10.1126/science.1208344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. 80.

    Maurice CF, Knowles SCL, Ladau J et al (2015) Marked seasonal variation in the wild mouse gut microbiota. ISME J 9:2423–2434. https://doi.org/10.1038/ismej.2015.53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. 81.

    Douterelo I, Boxall JB, Deines P et al (2014) Methodological approaches for studying the microbial ecology of drinking water distribution systems. Water Res. 65:134–156. https://doi.org/10.1016/j.watres.2014.07.008

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sara Marquez, Milagra Weiss and Nicholas Brown for technical assistance as well as the UC Riverside Genomics Core facility staff for their Next-Generation Sequencing expertise. The authors also wish to thank Gordon Wardell and The Wonderful Company for access to their almond orchards. This research was supported by The Almond Board of California (Project #15-POLL14-McFrederick/Meikle/Carroll) to Quinn McFrederick, William Meikle and Mark Carroll and through a fellowship awarded to Jason A. Rothman by the National Aeronautics and Space Administration MIRO Fellowships in Extremely Large Data Sets (Award No: NNX15AP99A).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Quinn S. McFrederick.

Electronic supplementary material

ESM 1

(DOCX 1028 kb)

ESM 2

(XLSX 8026 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rothman, J.A., Carroll, M.J., Meikle, W.G. et al. Longitudinal Effects of Supplemental Forage on the Honey Bee (Apis mellifera) Microbiota and Inter- and Intra-Colony Variability. Microb Ecol 76, 814–824 (2018). https://doi.org/10.1007/s00248-018-1151-y

Download citation

Keywords

  • honeybees
  • microbiome
  • supplemental forage
  • symbiosis