Longitudinal Effects of Supplemental Forage on the Honey Bee (Apis mellifera) Microbiota and Inter- and Intra-Colony Variability

  • Jason A. Rothman
  • Mark J. Carroll
  • William G. Meikle
  • Kirk E. Anderson
  • Quinn S. McFrederick
Invertebrate Microbiology


Honey bees (Apis mellifera) provide vital pollination services for a variety of agricultural crops around the world and are known to host a consistent core bacterial microbiome. This symbiotic microbial community is essential to many facets of bee health, including likely nutrient acquisition, disease prevention and optimal physiological function. Being that the bee microbiome is likely involved in the digestion of nutrients, we either provided or excluded honey bee colonies from supplemental floral forage before being used for almond pollination. We then used 16S rRNA gene sequencing to examine the effects of forage treatment on the bees’ microbial gut communities over four months. In agreement with previous studies, we found that the honey bee gut microbiota is quite stable over time. Similarly, we compared the gut communities of bees from separate colonies and sisters sampled from within the same hive over four months. Surprisingly, we found that the gut microbial communities of individual sisters from the same colony can exhibit as much variation as bees from different colonies. Supplemental floral forage had a subtle effect on the composition of the microbiome during the month of March only, with strains of Gilliamella apicola, Lactobacillus, and Bartonella being less proportionally abundant in bees exposed to forage in the winter. Collectively, our findings show that there is unexpected longitudinal variation within the gut microbial communities of sister honey bees and that supplemental floral forage can subtly alter the microbiome of managed honey bees.


honeybees microbiome supplemental forage symbiosis 



The authors would like to thank Sara Marquez, Milagra Weiss and Nicholas Brown for technical assistance as well as the UC Riverside Genomics Core facility staff for their Next-Generation Sequencing expertise. The authors also wish to thank Gordon Wardell and The Wonderful Company for access to their almond orchards. This research was supported by The Almond Board of California (Project #15-POLL14-McFrederick/Meikle/Carroll) to Quinn McFrederick, William Meikle and Mark Carroll and through a fellowship awarded to Jason A. Rothman by the National Aeronautics and Space Administration MIRO Fellowships in Extremely Large Data Sets (Award No: NNX15AP99A).

Supplementary material

248_2018_1151_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1028 kb)
248_2018_1151_MOESM2_ESM.xlsx (7.8 mb)
ESM 2 (XLSX 8026 kb)


  1. 1.
    Klein A-M, Vaissière BE, Cane JH et al (2007) Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 274:303–313.  https://doi.org/10.1098/rspb.2006.3721 CrossRefPubMedGoogle Scholar
  2. 2.
    Calderone NW (2012) Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS One 7:e37235CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Martinson VG, Danforth BN, Minckley RL et al (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20:619–628.  https://doi.org/10.1111/j.1365-294X.2010.04959.x CrossRefPubMedGoogle Scholar
  4. 4.
    Moran NA, Hansen AK, Powell JE, Sabree ZL (2012) Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One 7:e36393.  https://doi.org/10.1371/journal.pone.0036393 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kwong WK, Medina LA, Koch H et al (2017) Dynamic microbiome evolution in social bees. Sci. Adv. 3:e1600513.  https://doi.org/10.1126/sciadv.1600513 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Powell JE, Martinson VG, Urban-Mead K, Moran NA (2014) Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol. 80:7378–7387.  https://doi.org/10.1128/AEM.01861-14 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Anderson KE, Rodrigues PAP, Mott BM et al (2015) Ecological succession in the honey bee gut: shift in Lactobacillus strain dominance during early adult development. Microb. Ecol. 71:1008–1019.  https://doi.org/10.1007/s00248-015-0716-2 CrossRefPubMedGoogle Scholar
  8. 8.
    Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad. Sci. U. S. A. 109:11002–11007.  https://doi.org/10.1073/pnas.1202970109 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zheng H, Nishida A, Kwong WK et al (2016) Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. MBio 7:e01326–e01316.  https://doi.org/10.1128/mBio.01326-16 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kwong WK, Mancenido AL, Moran NA (2017) Immune system stimulation by the native gut microbiota of honey bees. R Soc Open Sci 4:170003.  https://doi.org/10.1098/rsos.170003 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schwarz RS, Moran NA, Evans JD (2016) Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. Proc. Natl. Acad. Sci. U. S. A. 113:9345–9350.  https://doi.org/10.1073/pnas.1606631113 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Corby-Harris V, Snyder L, Meador CAD et al (2016) Parasaccharibacter apium, gen. Nov., sp. nov., improves honey bee (hymenoptera: Apidae) resistance to Nosema. J. Econ. Entomol. 109:537–543.  https://doi.org/10.1093/jee/tow012 CrossRefPubMedGoogle Scholar
  13. 13.
    Zheng H, Powell JE, Steele MI et al (2017) Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl. Acad. Sci. U. S. A. 114:4775–4780.  https://doi.org/10.1073/pnas.1701819114 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mao W, Schuler MA, Berenbaum MR (2013) Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proc. Natl. Acad. Sci. U. S. A. 110:8842–8846.  https://doi.org/10.1073/pnas.1303884110 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Oldroyd BP (2007) What’s killing American honey bees? PLoS Biol. 5:e168.  https://doi.org/10.1371/journal.pbio.0050168 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wheeler MM, Robinson GE (2014) Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup. Sci Rep 4:5726.  https://doi.org/10.1038/srep05726 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Johnson RM, Mao W, Pollock HS et al (2012) Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera. PLoS One 7:e31051.  https://doi.org/10.1371/journal.pone.0031051 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kwong WK, Moran NA (2013) Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. Nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. Nov., sp. nov., a member of Orbaceae fam. Nov., Orbales ord. Nov., a sister taxon to the order 'Enterobacteriales' of the Gammaproteobacteria. Int. J. Syst. Evol. Microbiol. 63:2008–2018.  https://doi.org/10.1099/ijs.0.044875-0 CrossRefPubMedGoogle Scholar
  19. 19.
    Engel P, Kwong WK, Moran NA (2013) Frischella perrara gen. Nov., sp. nov., a gammaproteobacterium isolated from the gut of the honeybee, Apis mellifera. Int. J. Syst. Evol. Microbiol. 63:3646–3651.  https://doi.org/10.1099/ijs.0.049569-0 CrossRefPubMedGoogle Scholar
  20. 20.
    Olofsson TC, Alsterfjord M, Nilson B et al (2014) Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int. J. Syst. Evol. Microbiol. 64:3109–3119.  https://doi.org/10.1099/ijs.0.059600-0 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Maes P, Rodrigues P, Oliver R et al (2016) Diet related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honey bee Apis mellifera. Mol. Ecol. 25:5439–5450.  https://doi.org/10.1111/mec.13862 CrossRefPubMedGoogle Scholar
  22. 22.
    Carding S, Verbeke K, Vipond DT et al (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Heal Dis 26:26191.  https://doi.org/10.3402/mehd.v26.26191 Google Scholar
  23. 23.
    Brown K, DeCoffe D, Molcan E, Gibson DL (2012) Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 4:1095–1119.  https://doi.org/10.3390/nu4081095 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Faust K, Sathirapongsasuti JF, Izard J et al (2012) Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8:e1002606.  https://doi.org/10.1371/journal.pcbi.1002606 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Faust K, Lahti L, Gonze D et al (2015) Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr. Opin. Microbiol. 25:56–66.  https://doi.org/10.1016/j.mib.2015.04.004 CrossRefPubMedGoogle Scholar
  26. 26.
    Gerber GK (2014) The dynamic microbiome. FEBS Lett. 588:4131–4139.  https://doi.org/10.1016/j.febslet.2014.02.037 CrossRefPubMedGoogle Scholar
  27. 27.
    Lax S, Smith DP, Hampton-Marcell J et al (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345(80):1048–1052.  https://doi.org/10.1126/science.1254529 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Engel P, Kwong WK, McFrederick QS et al (2016) The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. MBio 7:e02164–e02115.  https://doi.org/10.1128/mBio.02164-15 PubMedPubMedCentralGoogle Scholar
  29. 29.
    Carroll MJ, Meikle WG, McFrederick QS, et al (2017) Supplemental forage improves colony survival and alters queen pheromone signaling in Nosema-infected overwintering colonies. RevGoogle Scholar
  30. 30.
    Engel P, James RR, Koga R et al (2013) Standard methods for research on Apis mellifera gut symbionts. J. Apic. Res. 52:1–24.  https://doi.org/10.3896/IBRA. CrossRefGoogle Scholar
  31. 31.
    McFrederick QS, Rehan SM (2016) Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Mol. Ecol. 25:2302–2311.  https://doi.org/10.1111/mec.13608 CrossRefPubMedGoogle Scholar
  32. 32.
    Kembel SW, O’Connor TK, Arnold HK et al (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. U. S. A. 111:13715–13720.  https://doi.org/10.1073/pnas.1216057111 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hanshew AS, Mason CJ, Raffa KF, Currie CR (2013) Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. J. Microbiol. Methods 95:149–155.  https://doi.org/10.1016/j.mimet.2013.08.007 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chakravorty S, Helb D, Burday M et al (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods 69:330–339.  https://doi.org/10.1016/j.mimet.2007.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461.  https://doi.org/10.1093/bioinformatics/btq461 CrossRefPubMedGoogle Scholar
  37. 37.
    Mercier C, Boyer F, Bonin A, Coissac E (2013) SUMATRA and SUMACLUST: fast and exact comparison and clustering of sequences. Programs Abstr SeqBio 2013 Work Abstr 27–29 . doi:  https://doi.org/10.1002/ejoc.201200111
  38. 38.
    Raymann K, Shaffer Z, Moran NA (2017) Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 15:e2001861.  https://doi.org/10.1371/journal.pbio.2001861 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ludvigsen J, Rangberg A, Avershina E et al (2015) Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season. Microbes Environ. 30:235–244.  https://doi.org/10.1264/jsme2.ME15019 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    McDonald D, Price MN, Goodrich J et al (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618.  https://doi.org/10.1038/ismej.2011.139 CrossRefPubMedGoogle Scholar
  41. 41.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261–5267.  https://doi.org/10.1128/AEM.00062-07 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J. Mol. Biol. 215:403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  43. 43.
    Caporaso JG, Bittinger K, Bushman FD et al (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267.  https://doi.org/10.1093/bioinformatics/btp636 CrossRefPubMedGoogle Scholar
  44. 44.
    DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72:5069–5072.  https://doi.org/10.1128/AEM.03006-05 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Price MN, Dehal PS, Arkin AP (2010) FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    McDonald D, Clemente JC, Kuczynski J et al (2012) The biological observation matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. Gigascience 1:7.  https://doi.org/10.1186/2047-217X-1-7 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71:8228–8235.  https://doi.org/10.1128/AEM.71.12.8228-8235.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    R Core Team (2017) R: A language and environment for statistical computingGoogle Scholar
  49. 49.
    Oksanen J, Blanchet FG, Friendly M, et al (2017) vegan: Community Ecology PackageGoogle Scholar
  50. 50.
    Wickham H (2009) ggplot2: Elegant graphics for data analysisGoogle Scholar
  51. 51.
    Paulson JN, Stine OC, Bravo HC, Pop M (2013) Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10:1200–1202.  https://doi.org/10.1038/nmeth.2658 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Martinson VG, Moy J, Moran NA (2012) Establishment of characteristic gut bacteria during development of the honeybee worker. Appl. Environ. Microbiol. 78:2830–2840.  https://doi.org/10.1128/AEM.07810-11 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Tinker KA, Ottesen EA (2016) The core gut microbiome of the American cockroach, Periplaneta americana, is stable and resilient to dietary shifts. Appl. Environ. Microbiol. 82:6603–6610.  https://doi.org/10.1128/AEM.01837-16 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sanders JG, Powell S, Kronauer DJC et al (2014) Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Mol. Ecol. 23:1268–1283.  https://doi.org/10.1111/mec.12611 CrossRefPubMedGoogle Scholar
  55. 55.
    Hroncova Z, Havlik J, Killer J et al (2015) Variation in honey bee gut microbial diversity affected by ontogenetic stage, age and geographic location. PLoS One 10:e0118707.  https://doi.org/10.1371/journal.pone.0118707 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384.  https://doi.org/10.1038/nrmicro.2016.43 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kapheim KM, Rao VD, Yeoman CJ et al (2015) Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS One 10:e0123911.  https://doi.org/10.1371/journal.pone.0123911 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Corby-Harris V, Maes P, Anderson KE (2014) The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS One 9:e95056.  https://doi.org/10.1371/journal.pone.0095056 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Jack CJ, Lucas HM, Webster TC, Sagili RR (2016) Colony level prevalence and intensity of Nosema ceranae in honey bees (Apis mellifera L.). PLoS One 11:e0163522.  https://doi.org/10.1371/journal.pone.0163522 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Emery O, Schmidt K, Engel P (2017) Immune system stimulation by the gut symbiont Frischella perrara in the honey bee ( Apis Mellifera ). Mol. Ecol. 26:2576–2590.  https://doi.org/10.1111/mec.14058 CrossRefPubMedGoogle Scholar
  61. 61.
    Powell E, Ratnayeke N, Moran NA (2016) Strain diversity and host specificity in a specialized gut symbiont of honeybees and bumblebees. Mol. Ecol. 25:4461–4471.  https://doi.org/10.1111/mec.13787 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Tarpy DR, Nielsen D (2002) Sampling error, effective paternity, and estimating the genetic structure of honey bee colonies (hymenoptera: Apidae). Ann. Entomol. Soc. Am. 95:513–528. https://doi.org/10.1603/0013-8746(2002)095[0513:SEEPAE]2.0.CO;2Google Scholar
  63. 63.
    Anderson KE, Ricigliano VA (2017) Honey bee gut dysbiosis: A novel context of disease ecology. Curr Opin Insect Sci In Press: . doi:  https://doi.org/10.1016/j.cois.2017.05.020
  64. 64.
    Zhou T, Li L, Zhang X et al (2016) Changes in organic carbon and nitrogen in soil with metal pollution by cd, cu, Pb and Zn: a meta-analysis. Eur. J. Soil Sci. 67:237–246.  https://doi.org/10.1111/ejss.12327 CrossRefGoogle Scholar
  65. 65.
    Cornman RS, Tarpy DR, Chen Y et al (2012) Pathogen webs in collapsing honey bee colonies. PLoS One 7:e43562.  https://doi.org/10.1371/journal.pone.0043562 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Runckel C, Flenniken ML, Engel JC et al (2011) Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS One 6:e20656.  https://doi.org/10.1371/journal.pone.0020656 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Kakumanu ML, Reeves AM, Anderson TD et al (2016) Honey bee gut microbiome is altered by in-hive pesticide exposures. Front. Microbiol. 7:1255.  https://doi.org/10.3389/fmicb.2016.01255 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Pătruică S, Mot D (2012) The effect of using prebiotic and probiotic products on intestinal micro-flora of the honeybee (Apis mellifera carpatica). Bull. Entomol. Res. 102:619–623.  https://doi.org/10.1017/S0007485312000144 CrossRefPubMedGoogle Scholar
  69. 69.
    Billiet A, Meeus I, Van Nieuwerburgh F et al (2015) Impact of sugar syrup and pollen diet on the bacterial diversity in the gut of indoor-reared bumblebees (Bombus terrestris). Apidologie 47:1–13.  https://doi.org/10.1007/s13592-015-0399-1 Google Scholar
  70. 70.
    Pennington MJ, Rothman JA, Jones MB et al (2017) Effects of contaminants of emerging concern on Megaselia scalaris (Lowe, Diptera: Phoridae) and its microbial community. Sci. Rep. 7:8165.  https://doi.org/10.1038/s41598-017-08683-7 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Pennington MJ, Rothman JA, Dudley SL, et al (2017) Contaminants of emerging concern affect Trichoplusia ni growth and development on artificial diets and a key host plant. Proc Natl Acad Sci. USA doi:  https://doi.org/10.1073/pnas.1713385114
  72. 72.
    Yun J-H, Roh SW, Whon TW et al (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80:5254–5264.  https://doi.org/10.1128/AEM.01226-14 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lee FJ, Rusch DB, Stewart FJ et al (2015) Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ. Microbiol. 17:796–815.  https://doi.org/10.1111/1462-2920.12526 CrossRefPubMedGoogle Scholar
  74. 74.
    McFrederick QS, Wcislo WT, Taylor DR et al (2012) Environment or kin: whence do bees obtain acidophilic bacteria? Mol. Ecol. 21:1754–1768.  https://doi.org/10.1111/j.1365-294X.2012.05496.x CrossRefPubMedGoogle Scholar
  75. 75.
    McFrederick QS, Thomas JM, Neff JL et al (2017) Flowers and wild megachilid bees share microbes. Microb. Ecol. 73:188–200.  https://doi.org/10.1007/s00248-016-0838-1 CrossRefPubMedGoogle Scholar
  76. 76.
    Anderson KE, Sheehan TH, Mott BM et al (2013) Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One 8:e83125.  https://doi.org/10.1371/journal.pone.0083125 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Rokop ZP, Horton MA, Newton ILG (2015) Interactions between cooccurring lactic acid bacteria in honey bee hives. Appl. Environ. Microbiol. 81:7261–7270.  https://doi.org/10.1128/AEM.01259-15 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Davenport ER, Mizrahi-Man O, Michelini K et al (2014) Seasonal variation in human gut microbiome composition. PLoS One 9:e90731.  https://doi.org/10.1371/journal.pone.0090731 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(80):105–109.  https://doi.org/10.1126/science.1208344 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Maurice CF, Knowles SCL, Ladau J et al (2015) Marked seasonal variation in the wild mouse gut microbiota. ISME J 9:2423–2434.  https://doi.org/10.1038/ismej.2015.53 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Douterelo I, Boxall JB, Deines P et al (2014) Methodological approaches for studying the microbial ecology of drinking water distribution systems. Water Res. 65:134–156.  https://doi.org/10.1016/j.watres.2014.07.008 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jason A. Rothman
    • 1
    • 2
  • Mark J. Carroll
    • 3
  • William G. Meikle
    • 3
  • Kirk E. Anderson
    • 3
    • 4
  • Quinn S. McFrederick
    • 1
  1. 1.Department of EntomologyUniversity of CaliforniaRiversideUSA
  2. 2.Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideUSA
  3. 3.Carl Hayden Bee Research CenterUSDA-ARSTucsonUSA
  4. 4.Department of EntomologyUniversity of ArizonaTucsonUSA

Personalised recommendations