Martin LB, Scheuerlein A, Wikelski M (2003) Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs? Proc R Soc Lond Ser B Biol Sci 270:153
Article
Google Scholar
Booth DT, Clayton DH, Block BA (1993) Experimental demonstration of the energetic cost of parasitism in free-ranging hosts. Proc R Soc Lond Ser B Biol Sci 253:125
Article
Google Scholar
Shikano I, Cory JS (2016) Altered nutrient intake by baculovirus-challenged insects: self-medication or compensatory feeding? J Invertebr Pathol 139:25–33. https://doi.org/10.1016/j.jip.2016.07.005
Article
PubMed
Google Scholar
Stafford-Banks CA, Yang LH, McMunn MS, Ullman DE (2014) Virus infection alters the predatory behavior of an omnivorous vector. Oikos 123:1384–1390. https://doi.org/10.1111/oik.01148
Article
Google Scholar
Jakobsen PJ, Wedekind C (1998) Copepod reaction to odor stimuli influenced by cestode infection. Behav Ecol 9:414–418. https://doi.org/10.1093/beheco/9.4.414
Article
Google Scholar
Naug D, Gibbs A (2009) Behavioral changes mediated by hunger in honeybees infected with Nosema ceranae. Apidologie 40:595–599. https://doi.org/10.1051/apido/2009039
Article
Google Scholar
Lefevre T, Adamo SA, Biron DG, Misse D, Hughes D, Thomas F (2009) Invasion of the body snatchers: the diversity and evolution of manipulative strategies in host-parasite Interactions. In: Webster JP (ed.) Advances in Parasitology. Natural History of Host-Parasite Interactions 68:45–83
Thompson SN, Redak RA (2008) Parasitism of an insect Manduca sexta L. alters feeding behaviour and nutrient utilization to influence developmental success of a parasitoid. J Comp Physiol B-Biochem Syst Environ Physiol 178:515–527. https://doi.org/10.1007/s00360-007-0244-6
Article
CAS
Google Scholar
Graham RI, Deacutis JM, Pulpitel T, Ponton F, Simpson SJ, Wilson K (2014) Locusts increase carbohydrate consumption to protect against a fungal biopesticide. J Insect Physiol 69:27–34. https://doi.org/10.1016/j.jinsphys.2014.05.015
Article
PubMed
CAS
Google Scholar
Abbott J (2014) Self-medication in insects: current evidence and future perspectives. Ecol Entomol 39:273–280. https://doi.org/10.1111/een.12110
Article
Google Scholar
Povey S, Cotter SC, Simpson SJ, Lee KP, Wilson K (2009) Can the protein costs of bacterial resistance be offset by altered feeding behaviour? J Anim Ecol 78:437–446. https://doi.org/10.1111/j.1365-2656.2008.01499.x
Article
PubMed
Google Scholar
Povey S, Cotter SC, Simpson SJ, Wilson K (2014) Dynamics of macronutrient self-medication and illness-induced anorexia in virally infected insects. J Anim Ecol 83:245–255. https://doi.org/10.1111/1365-2656.12127
Article
PubMed
Google Scholar
Lee KP, Cory JS, Wilson K, Raubenheimer D, Simpson SJ (2006) Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proc Royal Soc B-Biol Sci 273:823–829. https://doi.org/10.1098/rspb.2005.3385
Article
CAS
Google Scholar
Huffman MA, Caton JM (2001) Self-induced increase of gut motility and the control of parasitic infections in wild chimpanzees. Int J Primatol 22:329–346. https://doi.org/10.1023/a:1010734310002
Article
Google Scholar
Lefevre T, Roche B, Poulin R, Hurd H, Renaud F, Thomas F (2008) Exploiting host compensatory responses: the ‘must’ of manipulation? Trends Parasitol 24:435–439. https://doi.org/10.1016/j.pt.2008.06.006
Article
PubMed
Google Scholar
Karban R, English-Loeb G (1997) Tachinid parasitoids affect host plant choice by caterpillars to increase caterpillar survival. Ecology 78:603–611. https://doi.org/10.1890/0012-9658(1997)078<0603,TPAHPC>2.0.CO;2
Vale PF, Choisy M, Little TJ (2013) Host nutrition alters the variance in parasite transmission potential. Biol Lett 9:20121145. https://doi.org/10.1098/rsbl.2012.1145
Article
PubMed
PubMed Central
Google Scholar
Carlsson-Graner U, Thrall PH (2006) The impact of host longevity on disease transmission: host-pathogen dynamics and the evolution of resistance. Evol Ecol Res 8:659–675
Google Scholar
Poulin R, Maure F (2015) Host manipulation by parasites: a look back before moving forward. Trends Parasitol 31:563–570. https://doi.org/10.1016/j.pt.2015.07.002
Article
PubMed
Google Scholar
Thomas F, Rigaud T, Brodeur J (2012) Evolutionary routes leading to host manipulation by parasites. In: Hughes DP, Brodeur J, Thomas F (eds) Host manipulation by parasites. Oxford University Press, Oxford, pp 16–35
Chapter
Google Scholar
Calderone NW (2012) Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. Plos One 7(5):e37235. https://doi.org/10.1371/journal.pone.0037235
Campbell J, Kessler B, Mayack C, Naug D (2010) Behavioural fever in infected honeybees: parasitic manipulation or coincidental benefit? Parasitology 137:1487–1491. https://doi.org/10.1017/s0031182010000235
Article
PubMed
Google Scholar
Evans JD, Schwarz RS (2011) Bees brought to their knees: microbes affecting honey bee health. Trends Microbiol 19:614–620. https://doi.org/10.1016/j.tim.2011.09.003
Article
PubMed
CAS
Google Scholar
Higes M, Martin-Hernandez R, Botias C, Bailon EG, Gonzalez-Porto AV, Barrios L, del Nozal MJ, Bernal JL, Jimenez JJ, Palencia PG, Meana A (2008) How natural infection by Nosema ceranae causes honeybee colony collapse. Environ Microbiol 10:2659–2669. https://doi.org/10.1111/j.1462-2920.2008.01687.x
Article
PubMed
Google Scholar
Mayack C, Naug D (2009) Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J Invertebr Pathol 100:185–188. https://doi.org/10.1016/j.jip.2008.12.001
Article
PubMed
Google Scholar
Eiri DM, Suwannapong G, Endler M, Nieh JC (2015) Nosema ceranae can infect honey bee larvae and reduces subsequent adult longevity. PLoS One 10:e0126330. https://doi.org/10.1371/journal.pone.0126330
Article
PubMed
PubMed Central
CAS
Google Scholar
Fries I, Feng F, daSilva A, Slemenda SB, Pieniazek NJ (1996) Nosema ceranae n sp (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur J Protistol 32:356–365
Article
Google Scholar
Higes M, Martin R, Meana A (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol 92:93–95. https://doi.org/10.1016/j.jip.2006.02.005
Article
PubMed
CAS
Google Scholar
Chen Y, Evans JD, Smith IB, Pettis JS (2008) Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. J Invertebr Pathol 97:186–188
Article
PubMed
Google Scholar
Guerrero-Molina C, Correa-Benitez A, Hamiduzzaman MM, Guzman-Novoa E (2016) Nosema ceranae is an old resident of honey bee (Apis mellifera) colonies in Mexico, causing infection levels of one million spores per bee or higher during summer and fall. J Invertebr Pathol 141:38–40. https://doi.org/10.1016/j.jip.2016.11.001
Article
PubMed
Google Scholar
Rangel J, Baum K, Rubink WL, Coulson RN, Johnston JS, Traver BE (2016) Prevalence of Nosema species in a feral honey bee population: a 20-year survey. Apidologie 47:561–571. https://doi.org/10.1007/s13592-015-0401-y
Article
Google Scholar
Smart MD, Sheppard WS (2012) Nosema ceranae in age cohorts of the western honey bee (Apis mellifera). J Invertebr Pathol 109:148–151. https://doi.org/10.1016/j.jip.2011.09.009
Article
PubMed
Google Scholar
Martin-Hernandez R, Botias C, Barrios L, Martinez-Salvador A, Meana A, Mayack C, Higes M (2011) Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera). Parasitol Res 109:605–612. https://doi.org/10.1007/s00436-011-2292-9
Article
PubMed
Google Scholar
Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge
Google Scholar
Di Pasquale G, Salignon M, Le Conte Y, Belzunces LP, Decourtye A, Kretzschmar A, Suchail S, Brunet JL, Alaux C (2013) Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PLoS ONE 8(8):e72016. https://doi.org/10.1371/journal.pone.0072016
Jack CJ, Uppala SS, Lucas HM, Sagili RR (2016) Effects of pollen dilution on infection of Nosema ceranae in honey bees. J Insect Physiol 87:12–19. https://doi.org/10.1016/j.jinsphys.2016.01.004
Article
PubMed
CAS
Google Scholar
Mulholland GE, Traver BE, Johnson NG, Fell RDF (2012) Individual variability of Nosema ceranae infections in Apis mellifera colonies. Insects 3:1143–1155
Article
PubMed
PubMed Central
Google Scholar
Fries I, Chauzat MP, Chen YP, Doublet V, Genersch E, Gisder S, Higes M, McMahon DP, Martín-Hernández R, Natsopoulou M, Paxton RJ, Tanner G, Webster TC, Williams GR (2013) Standard methods for Nosema research. J Apic Res 52:1–28
Article
Google Scholar
Williams GR, Alaux C, Costa C, Csaki T, Doublet V, Eisenhardt D, Fries I, Kuhn R, McMahon DP, Medrzycki P, Murray TE, Natsopoulou ME, Neumann P, Oliver R, Paxton RJ, Pernal SF, Shutler D, Tanner G, van der Steen JJM, Brodschneider R (2013) Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J Apic Res 52(1):1–36. https://doi.org/10.3896/ibra.1.52.1.04
Somerville DC (2012) Pollen trapping and storage. NSW Department of Primary Industries, PUB11/75[v2], 5. https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0003/117516/Pollen-trapping-and-Storage.pdf
Somerville DC (2005) Fat bees, skinny bees: a manual on honey bee nutrition for beekeepers. Rural Industries Research and Development Corporation, RIRDC Publication No 05/054. http://www.agrifutures.com.au/publications/fat-bees-skinny-bees-a-manual-on-honey-bee-nutrition-for-beekeepers/
Manning R, Harvey M (2002) Fatty acids in honeybee-collected pollens from six endemic Western Australian eucalypts and the possible significance to the Western Australian beekeeping industry. Aust J Exp Agric 42:217–223. https://doi.org/10.1071/ea00160
Article
CAS
Google Scholar
Cantwell GE (1970) Standard methods for counting nosema spores. Am Bee J 110:222–223
Google Scholar
Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. https://doi.org/10.1016/j.tree.2008.10.008
Article
PubMed
Google Scholar
Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363
Article
PubMed
Google Scholar
Warton DI, Hui FKC (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10. https://doi.org/10.1890/10-0340.1
Article
PubMed
Google Scholar
R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL http://www.R-project.org/
RStudio Team (2016) RStudio: integrated development for R. RStudio, Inc., Boston. URL http://www.rstudio.com/
Bates D, Machler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48
Article
Google Scholar
Frias BED, Barbosa CD, Lourenco AP (2016) Pollen nutrition in honey bees (Apis mellifera): impact on adult health. Apidologie 47:15–25. https://doi.org/10.1007/s13592-015-0373-y
Article
CAS
Google Scholar
DeGrandi-Hoffman G, Chen YP (2015) Nutrition, immunity and viral infections in honey bees. Curr Opin Insect Sci 10:170–176. https://doi.org/10.1016/j.cois.2015.05.007
Article
PubMed
Google Scholar
Wang H, Zhang SW, Zeng ZJ, Yan WY (2014) Nutrition affects longevity and gene expression in honey bee (Apis mellifera) workers. Apidologie 45:618–625. https://doi.org/10.1007/s13592-014-0276-3
Article
CAS
Google Scholar
Mattila HR, Otis GW (2006) Effects of pollen availability and Nosema infection during the spring on division of labor and survival of worker honey bees (Hymenoptera : Apidae). Environ Entomol 35:708–717
Article
Google Scholar
DeGrandi-Hoffman G, Chen YP, Rivera R, Carroll M, Chambers M, Hidalgo G, de Jong EW (2016) Honey bee colonies provided with natural forage have lower pathogen loads and higher overwinter survival than those fed protein supplements. Apidologie 47:186–196. https://doi.org/10.1007/s13592-015-0386-6
Article
CAS
Google Scholar
Schmid-Hempel P, Stauffer HP (1998) Parasites and flower choice of bumblebees. Anim Behav 55:819–825. https://doi.org/10.1006/anbe.1997.0661
Article
PubMed
CAS
Google Scholar
Schmid-Hempel P, Schmid-Hempel R (1990) Endoparasitic larvae of conopid flies alter pollination behavior of bumblebees. Naturwissenschaften 77:450–452. https://doi.org/10.1007/bf01135951
Article
Google Scholar
Shykoff JA, Schmid-Hempel P (1991) Incidence and effects of four parasites in natural populations of bumble bees in Switzerland. Apidologie 22:117–125
Article
Google Scholar
Gherman BI, Denner A, Bobis O, Dezmirean DS, Marghitas LA, Schluns H, Moritz RFA, Erler S (2014) Pathogen-associated self-medication behavior in the honeybee Apis mellifera. Behav Ecol Sociobiol 68:1777–1784. https://doi.org/10.1007/s00265-014-1786-8
Article
Google Scholar
Simone-Finstrom MD, Spivak M (2012) Increased resin collection after parasite challenge: a case of self-medication in honey bees? PLoS ONE 7(3): e34601. https://doi.org/10.1371/journal.pone.0034601
Erler S, Moritz RFA (2016) Pharmacophagy and pharmacophory: mechanisms of self-medication and disease prevention in the honeybee colony (Apis mellifera). Apidologie 47:389–411. https://doi.org/10.1007/s13592-015-0400-z
Article
CAS
Google Scholar
Koch H, Brown MJF, Stevenson PC (2017) The role of disease in bee foraging ecology. Curr Opin Insect Sci 21:60–67. https://doi.org/10.1016/j.cois.2017.05.008
Article
PubMed
Google Scholar
Hendriksma HP, Shafir S (2016) Honey bee foragers balance colony nutritional deficiencies. Behav Ecol Sociobiol 70:509–517. https://doi.org/10.1007/s00265-016-2067-5
Article
Google Scholar
Nicholls E, de Ibarra NH (2017) Assessment of pollen rewards by foraging bees. Funct Ecol 31:76–87. https://doi.org/10.1111/1365-2435.12778
Article
Google Scholar
Schmidt JO, Thoenes SC, Levin MD (1987) Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann Entomol Soc Am 80:176–183. https://doi.org/10.1093/aesa/80.2.176
Article
Google Scholar
Anderson DL, Giacon H (1992) Reduced pollen collection by honey bee (Hymenoptera: Apidae) colonies infected with Nosema apis and sacbrood virus. J Econ Entomol 85:47–51
Article
Google Scholar
Lach L, Kratz M, Baer B (2015) Parasitized honey bees are less likely to forage and carry less pollen. J Invertebr Pathol 130:64–71. https://doi.org/10.1016/j.jip.2015.06.003
Article
PubMed
Google Scholar
Milbrath MO, Xie XB, Huang ZY (2013) Nosema ceranae induced mortality in honey bees (Apis mellifera) depends on infection methods. J Invertebr Pathol 114:42–44. https://doi.org/10.1016/j.jip.2013.05.006
Article
PubMed
Google Scholar
Kurze C, Mayack C, Hirche F, Stangl GI, Le Conte Y, Kryger P, Moritz RFA (2016) Nosema spp. infections cause no energetic stress in tolerant honeybees. Parasitol Res 115:2381–2388. https://doi.org/10.1007/s00436-016-4988-3
Article
PubMed
Google Scholar