Skip to main content

Advertisement

Log in

Distinctive Soil Archaeal Communities in Different Variants of Tropical Equatorial Forest

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Little is known of how soil archaeal community composition and diversity differ between local variants of tropical rainforests. We hypothesized that (1) as with plants, animals, fungi, and bacteria, the soil archaeal community would differ between different variants of tropical forest; (2) that spatially rarer forest variants would have a less diverse archaeal community than common ones; (3) that a history of forest disturbance would decrease archaeal alpha- and beta-diversity; and (4) that archaeal distributions within the forest would be governed more by deterministic than stochastic factors. We sampled soil across several different forest types within Brunei, Northwest Borneo. Soil DNA was extracted, and the 16S rRNA gene of archaea was sequenced using Illumina MiSeq. We found that (1) as hypothesized, there are distinct archaeal communities for each forest type, and community composition significantly correlates with soil parameters including pH, organic matter, and available phosphorous. (2) As hypothesized, the “rare” white sand forest variants kerangas and inland heath had lower archaeal diversity. A nestedness analysis showed that archaeal community in inland heath and kerangas was mainly a less diverse subset of that in dipterocarp forests. However, primary dipterocarp forest had the lowest beta-diversity among the other tropical forest types. (3) Also, as predicted, forest disturbance resulted in lower archaeal alpha-diversity—but increased beta-diversity in contrast with our predictions. (4) Contrary to our predictions, the BetaNTI of the various primary forest types indicated community assembly was mainly stochastic. The possible effects of these habitat and disturbance-related effects on N cycling should be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Corlett RT (2014) The ecology of tropical East Asia. Oxford University Press, UK

    Book  Google Scholar 

  2. Whitmore T (1984) Tropical rain forests of the Par East. Oxford University Press, Oxford

    Google Scholar 

  3. Tripathi BM, Song W, Slik J, Sukri RS, Jaafar S, Dong K, Adams JM (2016) Distinctive tropical forest variants have unique soil microbial communities, but not always low microbial diversity. Front Microbiol 7

  4. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci 87:4576–4579

    Article  PubMed  CAS  Google Scholar 

  5. Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908

    Article  PubMed  CAS  Google Scholar 

  6. Bengtson P, Sterngren AE, Rousk J (2012) Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates. Appl Environ Microbiol 78:5906–5911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cao P, Zhang L-M, Shen J-P, Zheng Y-M, Di HJ, He J-Z (2012) Distribution and diversity of archaeal communities in selected Chinese soils. FEMS Microbiol Ecol 80:146–158

    Article  PubMed  CAS  Google Scholar 

  8. Tripathi BM, Kim M, Lai-Hoe A, Shukor NA, Rahim RA, Go R, Adams JM (2013) pH dominates variation in tropical soil archaeal diversity and community structure. FEMS Microbiol Ecol 86:303–311

    Article  PubMed  CAS  Google Scholar 

  9. Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941

    Article  PubMed  CAS  Google Scholar 

  10. Singh D, Takahashi K, Park J, Adams JM (2016) Similarities and contrasts in the archaeal community of two Japanese mountains: Mt. Norikura compared to Mt. Fuji. Microb Ecol 71:428–441

    Article  PubMed  CAS  Google Scholar 

  11. Tripathi BM, Kim M, Tateno R, Kim W, Wang J, Lai-Hoe A, Shukor NAA, Rahim RA, Go R, Adams JM (2015) Soil pH and biome are both key determinants of soil archaeal community structure. Soil Biol Biochem 88:1–8

    Article  CAS  Google Scholar 

  12. He J-Z, Hu H-W, Zhang L-M (2012) Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biol Biochem 55:146–154

    Article  CAS  Google Scholar 

  13. Zhang L-M, Hu H-W, Shen J-P, He J-Z (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6:1032

    Article  PubMed  CAS  Google Scholar 

  14. Angel R, Soares MIM, Ungar ED, Gillor O (2010) Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J 4:553

    Article  PubMed  Google Scholar 

  15. Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978

    Article  PubMed  CAS  Google Scholar 

  16. Singh D, Takahashi K, Adams JM (2012) Elevational patterns in archaeal diversity on Mt. Fuji. PLoS One 7:e44494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Shi Y, Adams JM, Ni Y, Yang T, Jing X, Chen L, He J-S, Chu H (2016) The biogeography of soil archaeal communities on the eastern Tibetan Plateau. Sci Rep 6

  18. Katagiri S, Yamakura T, Lee SH (1991) Properties of soils in kerangas forest on sandstone at Bako National Park, Sarawak, East Malaysia

  19. Proctor J (1999) Heath forests and acid soils. Bot J Scotl 51:1–14

    Article  Google Scholar 

  20. Moran JA, Barker MG, Moran AJ, Becker P, Ross SM (2000) A comparison of the soil water, nutrient status, and litterfall characteristics of tropical heath and mixed-dipterocarp forest sites in Brunei. Biotropica 32:2–13

    Article  Google Scholar 

  21. Din H, Metali F, Sukri RS (2015) Tree diversity and community composition of the Tutong white sands, Brunei Darussalam: a rare tropical heath forest ecosystem. Int J Ecol 2015

  22. Könneke M, Bernhard AE, de La Torre JR, Walker CB (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543

    Article  PubMed  CAS  Google Scholar 

  23. Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ. Microbiol. 7:1985–1995

    Article  PubMed  CAS  Google Scholar 

  24. Lipp JS, Morono Y, Inagaki F, Hinrichs K-U (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991

    Article  PubMed  CAS  Google Scholar 

  25. Thauer RK (2011) Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO 2. Curr Opin Microbiol 14:292–299

    Article  PubMed  CAS  Google Scholar 

  26. Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  PubMed  CAS  Google Scholar 

  27. Lee-Cruz L, Edwards DP, Tripathi BM, Adams JM (2013) Impact of logging and forest conversion to oil palm plantations on soil bacterial communities in Borneo. Appl Environ Microbiol 79:7290–7297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kerfahi D, Tripathi BM, Lee J, Edwards DP, Adams JM (2014) The impact of selective-logging and forest clearance for oil palm on fungal communities in Borneo. PLoS One 9:e111525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Tripathi BM, Edwards DP, Mendes LW, Kim M, Dong K, Kim H, Adams JM (2016) The impact of tropical forest logging and oil palm agriculture on the soil microbiome. Mol Ecol 25:2244–2257

    Article  PubMed  CAS  Google Scholar 

  30. Edwards DP, Larsen TH, Docherty TD, Ansell FA, Hsu WW, Derhé MA, Hamer KC, Wilcove DS (2011) Degraded lands worth protecting: the biological importance of Southeast Asia’s repeatedly logged forests. P Roy Soc London B: Biol Sci 278:82–90

    Article  Google Scholar 

  31. Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJ, Laurance WF, Lovejoy TE (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378

    Article  PubMed  CAS  Google Scholar 

  32. Wang J, Shen J, Wu Y, Tu C, Soininen J, Stegen JC, He J, Liu X, Zhang L, Zhang E (2013) Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J 7:1310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Stegen JC, Freestone AL, Crist TO, Anderson MJ, Chase JM, Comita LS, Cornell HV, Davies KF, Harrison SP, Hurlbert AH (2013) Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Glob Ecol Biogeogr 22:202–212

    Article  Google Scholar 

  34. Stegen JC, Lin X, Konopka AE, Fredrickson JK (2012) Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6:1653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hu W, Zhang Q, Tian T, Li D, Cheng G, Mu J, Wu Q, Niu F, Stegen JC, An L (2015) Relative roles of deterministic and stochastic processes in driving the vertical distribution of bacterial communities in a permafrost core from the Qinghai-Tibet Plateau, China. PLoS One 10:e0145747

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu Y, Xiang Y, Wang J, Zhong J, He J, Wu QL (2010) Heterogeneity of archaeal and bacterial ammonia-oxidizing communities in Lake Taihu, China. Environ Microbiol Rep 2:569–576

    Article  PubMed  CAS  Google Scholar 

  37. Alves RJE, Wanek W, Zappe A, Richter A, Svenning MM, Schleper C, Urich T (2013) Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea. ISME J 7:1620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Liu S, Shen L, Lou L, Tian G, Zheng P, Hu B (2013) Spatial distribution and factors shaping the niche segregation of ammonia-oxidizing microorganisms in the Qiantang River, China. Appl Environ Microbiol 79:4065–4071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Miyamoto K, Suzuki E, Kohyama T, Seino T, Mirmanto E, Simbolon H (2003) Habitat differentiation among tree species with small-scale variation of humus depth and topography in a tropical heath forest of Central Kalimantan, Indonesia. J Trop Ecol 19:43–54

    Article  Google Scholar 

  40. Proctor J, Anderson J, Chai P, Vallack H (1983) Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak: I. Forest environment, structure and floristics. J Ecol:237–260

  41. Adeney JM, Christensen NL, Vicentini A, Cohn-Haft M (2016) White-sand ecosystems in Amazonia. Biotropica 48:7–23

    Article  Google Scholar 

  42. Whitmore T, Flenley J, Harris D (1982) The tropics as the norm in biogeography? Geogr J 148:8–18

    Article  Google Scholar 

  43. Huston MA, Huston MA (1994) Biological diversity: the coexistence of species. Cambridge University Press

  44. McGrath DA, Smith CK, Gholz HL, de Assis Oliveira F (2001) Effects of land-use change on soil nutrient dynamics in Amazonia. Ecosystems 4:625–645

    Article  CAS  Google Scholar 

  45. Murty D, Kirschbaum MU, Mcmurtrie RE, Mcgilvray H (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Chang Biol 8:105–123

    Article  Google Scholar 

  46. Davies SJ, Becker P (1996) Floristic composition and stand structure of mixed dipterocarp and heath forests in Brunei Darussalam. J Trop For Sci: 542–569

  47. Becker P (1992) Seasonality of rainfall and drought in Brunei Darussalam. Brunei museum. Journal 7:99–109

    Google Scholar 

  48. David A, Sidup S (1996) Brunei metereological services, updated 2008, Climate of Brunei Darussalam

  49. Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35:167–176

    Article  CAS  Google Scholar 

  50. Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277

    Article  PubMed  CAS  Google Scholar 

  51. Comeau AM, Li WK, Tremblay J-É, Carmack EC, Lovejoy C (2011) Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS One 6:e27492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Allen SE, Grimshaw HM, Parkinson JA, Quarmby C (1974) Chemical analysis of ecological materials. Blackwell Scientific Publications

  53. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H, Yi H (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  PubMed  CAS  Google Scholar 

  58. Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC bioinformatics 9:386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package. Community ecology package 10:631–637

    Google Scholar 

  60. Rodríguez-Gironés MA, Santamaría L (2006) A new algorithm to calculate the nestedness temperature of presence–absence matrices. J Biogeogr 33:924–935

    Article  Google Scholar 

  61. Geel M, Ceustermans A, Hemelrijck W, Lievens B, Honnay O (2015) Decrease in diversity and changes in community composition of arbuscular mycorrhizal fungi in roots of apple trees with increasing orchard management intensity across a regional scale. Mol Ecol 24:941–952

    Article  PubMed  CAS  Google Scholar 

  62. McDonald JH (2009) Handbook of biological statistics. Sparky House Publishing, Baltimore

    Google Scholar 

  63. Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100

    Article  PubMed  CAS  Google Scholar 

  64. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40:2407–2415

    Article  CAS  Google Scholar 

  65. Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin A, Go R, Rahim RA, Husni M, Chun J (2012) Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microb Ecol 64:474–484

    Article  PubMed  Google Scholar 

  66. Cornejo FH, Varela A, Wright SJ (1994) Tropical forest litter decomposition under seasonal drought: nutrient release, fungi and bacteria. Oikos:183–190

  67. Dong K, Kim W-S, Tripathi BM, Adams J (2015) Generalized soil Thaumarchaeota community in weathering rock and Saprolite. Microb Ecol 69:356–360

    Article  PubMed  Google Scholar 

  68. Siles JA, Margesin R (2016) Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: what are the driving factors? Microb Ecol 72:207–220

    Article  PubMed  PubMed Central  Google Scholar 

  69. Stahl DA, de la Torre JR (2012) Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol 66:83–101

    Article  PubMed  CAS  Google Scholar 

  70. Tupinambá DD, Cantão ME, Costa OYA, Bergmann JC, Kruger RH, Kyaw CM, Barreto CC, Quirino BF (2016) Archaeal community changes associated with cultivation of Amazon Forest soil with oil palm. Archaea 2016

  71. Zhong W, Cai Z (2007) Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Appl Soil Ecol 36:84–91

    Article  Google Scholar 

  72. Auguet J-C, Casamayor EO (2013) Partitioning of Thaumarchaeota populations along environmental gradients in high mountain lakes. FEMS Microbiol Ecol 84:154–164

    Article  PubMed  CAS  Google Scholar 

  73. Pedneault E, Galand PE, Potvin M, Tremblay J-É, Lovejoy C (2014) Archaeal amoA and ureC genes and their transcriptional activity in the Arctic Ocean. Sci Rep 4

  74. Nicol GW, Campbell CD, Chapman SJ, Prosser JI (2007) Afforestation of moorland leads to changes in crenarchaeal community structure. FEMS Microbiol Ecol 60:51–59

    Article  PubMed  CAS  Google Scholar 

  75. Nicol GW, Tscherko D, Embley TM, Prosser JI (2005) Primary succession of soil Crenarchaeota across a receding glacier foreland. Environ Microbiol 7:337–347

    Article  PubMed  CAS  Google Scholar 

  76. Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol

  77. Chase JM (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science 328:1388–1391

    Article  PubMed  CAS  Google Scholar 

  78. Rodrigues JL, Pellizari VH, Mueller R, Baek K, Jesus EC, Paula FS, Mirza B, Hamaoui GS, Tsai SM, Feigl B (2013) Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Natl Acad Sci 110:988–993

    Article  PubMed  Google Scholar 

  79. Carvalho TS, Jesus EC, Barlow J, Gardner TA, Soares IC, Tiedje JM, Moreira FMS (2016) Land use intensification in the humid tropics increased both alpha and beta diversity of soil bacteria. Ecology 97:2760–2771

    Article  PubMed  Google Scholar 

  80. Fine PV, García-Villacorta R, Pitman NC, Mesones I, Kembel SW (2010) A floristic study of the white-sand forests of Peru. Ann Mo Bot Gard 97:283–305

    Article  Google Scholar 

  81. Phillips O, Miller JS (2002) Global patterns of plant diversity: Alwyn H. Gentry’s forest transect data set. Missouri Botanical Press

  82. Edwards DP, Hodgson JA, Hamer KC, Mitchell SL, Ahmad AH, Cornell SJ, Wilcove DS (2010) Wildlife-friendly oil palm plantations fail to protect biodiversity effectively. Conser Lett 3:236–242

    Article  Google Scholar 

  83. Acosta-Martínez V, Dowd S, Sun Y, Allen V (2008) Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem 40:2762–2770

    Article  CAS  Google Scholar 

  84. Shange RS, Ankumah RO, Ibekwe AM, Zabawa R, Dowd SE (2012) Distinct soil bacterial communities revealed under a diversely managed agroecosystem. PLoS One 7:e40338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Research Foundation (NRF) funded by the Korean Government, Ministry of Education, Science and Technology (MEST) (NRF-0409-20150076). We thank the Brunei Forestry Department and the Biodiversity Research and Innovation Centre for entry and export permits, respectively, and the Universiti Brunei Darussalam for permission to conduct research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Adams.

Electronic Supplementary Material

ESM 1

(DOCX 430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerfahi, D., Tripathi, B.M., Slik, J.W.F. et al. Distinctive Soil Archaeal Communities in Different Variants of Tropical Equatorial Forest. Microb Ecol 76, 215–225 (2018). https://doi.org/10.1007/s00248-017-1118-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1118-4

Keywords

Navigation