Bacterial Shifts in Nutrient Solutions Flowing Through Biofilters Used in Tomato Soilless Culture

Abstract

In soilless culture, slow filtration is used to eliminate plant pathogenic microorganisms from nutrient solutions. The present study focused on the characterization and the potential functions of microbial communities colonizing the nutrient solutions recycled on slow filters during a whole cultivation season of 7 months in a tomato growing system. Bacterial microflora colonizing the solutions before and after they flew through the columns were studied. Two filters were amended with Pseudomonas putida (P-filter) or Bacillus cereus strains (B-filter), and a third filter was a control (C-filter). Biological activation of filter unit through bacterial amendment enhanced very significantly filter efficacy against plant potential pathogens Pythium spp. and Fusarium oxysporum. However, numerous bacteria (103–104 CFU/mL) were detected in the effluent solutions. The community-level physiological profiling indicated a temporal shift of bacterial microflora, and the metabolism of nutrient solutions originally oriented towards carbohydrates progressively shifted towards degradation of amino acids and carboxylic acids over the 7-month period of experiment. Single-strand conformation polymorphism fingerprinting profiles showed that a shift between bacterial communities colonizing influent and effluent solutions of slow filters occurred. In comparison with influent, 16S rDNA sequencing revealed that phylotype diversity was low in the effluent of P- and C-filters, but no reduction was observed in the effluent of the B-filter. Suppressive potential of solutions filtered on a natural filter (C-filter), where the proportion of Proteobacteria (α- and β-) increased, whereas the proportion of uncultured candidate phyla rose in P- and B-filters, is discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Stanghellini ME, Rasmussen SL (1994) Hydroponics, a solution for zoosporic pathogens. Plant Dis. 78:1129–1138

    Article  Google Scholar 

  2. 2.

    Vallance J, Déniel F, Le Floch G, Guérin-Dubrana L, Blancard D, Rey P (2011) Potentially pathogenic and beneficial microorganisms in soilless cultures. A review. Agron. Sustain. Dev. 31:191–203

    Article  Google Scholar 

  3. 3.

    Davies JML (1980) Diseases in NFT. Acta Hort 98:299–305

    Article  Google Scholar 

  4. 4.

    Evans SG (1979) Susceptibility of plants to fungal pathogens when grown by the nutrient-film technique (NFT). Plant Pathol. 28:45–48

    Article  Google Scholar 

  5. 5.

    Runia WT (1995) A review of possibilities for disinfection of recirculation water from soilless cultures. Acta Hort 382:221–229

    Article  Google Scholar 

  6. 6.

    Paulitz TC (1997) Biological control of root pathogens in soilless and hydroponic systems. Hortscience 32:193–196

    Google Scholar 

  7. 7.

    McPherson GM, Harriman MR, Pattison D (1995) The potential for spread of root diseases in recirculating hydroponic systems and their control with disinfection. Meded Fac Landbouwwet Univ Gent 60/2b:371–379

    Google Scholar 

  8. 8.

    Van OEA (1999) Closed soilless growing systems: a sustainable solution for Dutch greenhouse horticulture. Water Sci. Technol. 39:105–112

    Article  Google Scholar 

  9. 9.

    Ehret DL, Alsanius B, Wohanka W, Menzies JG, Utkhede R (2001) Disinfestation of recirculating nutrient solutions in greenhouse horticulture. Agronomie 21:323–339

    Article  Google Scholar 

  10. 10.

    Postma J, Willemsen de Klein MJEIM, van Elsas FD (2000) Effect of the indigenous microflora on the development of root and crown rot caused by Pythium aphanidermatum in cucumber grown on rockwool. Phytopathology 90:125–133

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Zhang W, JC T (2000) Effect of ultraviolet disinfection of hydroponic solutions on Pythium root rot and non-target bacteria. Eur. J. Plant Pathol. 106:415–421

    Article  Google Scholar 

  12. 12.

    Tu JC, Papadopoulos AP, Hao X, Zheng J (1999) The relationship of Pythium root rot and rhizosphere microorganisms in a closed circulating and an open system in rockwool culture of tomato. Acta Hort 481:577–583

    Article  Google Scholar 

  13. 13.

    Chave M, Dabert P, Brun R, Godon JJ, Poncet C (2008) Dynamics of rhizoplane bacterial communities subjected to physicochemical treatments in hydroponic crops. Crop Prot. 27:418–426

    Article  CAS  Google Scholar 

  14. 14.

    Postma J, Geraats BPJ, Pastoor R, van Elsas JD (2005) Characterization of the microbial community involved in the suppression of Pythium aphanidermatum in cucumber grown on rockwool. Phytopathology 95:808–818

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Ellis KV (1985) Slow sand filtration. Crit Rev Environ Contr 15:315–354

    Article  CAS  Google Scholar 

  16. 16.

    Wohanka W (1995) Disinfection of recirculating nutrient solutions by slow sand filtration. Acta Hort 382:246–255

    Article  Google Scholar 

  17. 17.

    Rey P, Picard K, Déniel F, Benhamou N, Tirilly Y (1999) Development of an IPM sytem in soilless culture by using slow sand filtration and a biocontrol fungus, Pythium oligandrum. IOBC Bulletin 22:205–208

  18. 18.

    Van OEA, Amsing JJ, van Kuik AJ, Willers H (1999) Slow filtration: a potential method for the elimination of pathogens and nematodes in recirculating nutrient solutions from glasshouse-grown crops. Acta Hort 481:519–526

    Article  Google Scholar 

  19. 19.

    Brand T, Wohanka W (2001) Importance and characterization of the biological component in slow filters. Acta Hort 554:313–321

    Article  Google Scholar 

  20. 20.

    Calvo-Bado LA, Pettitt TR, Parsons N, Petch GM, Morgan JAW, Whipps JM (2003) Spatial and temporal analysis of the microbial community in slow sand filters used for treating horticultural irrigation water. Appl. Environ. Microbiol. 69:2116–2125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Renault D, Tirilly Y, Benizri E, Sohier D, Barbier G, Rey P (2007) Characterization of Bacillus and Pseudomonas strains with suppressive traits isolated from tomato hydroponic-slow filtration unit. Can. J. Microbiol. 53:784–797

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Déniel F, Rey P, Chérif M, Guillou A, Tirilly Y (2004) Indigenous bacteria with antagonistic and plant-growth-promoting activities improve slow-filtration efficiency in soilless cultivation. Can. J. Microbiol. 50:499–508

    Article  PubMed  Google Scholar 

  23. 23.

    Déniel F, Renault D, Tirilly Y, Barbier RP (2006) Dynamic filtration in tomato soilless greenhouse: evolution of microbial communities on filtering media and control of potentially suppressive and pathogenic microorganisms. Agron. Sustain. Dev. 26:185–193

    Article  Google Scholar 

  24. 24.

    Berkelmann B, Wohanka W, Wolf GA (1994) Characterization of the bacterial flora in circulating nutrient solutions of a hydroponic system with rockwool. Acta Hort 361:372–381

    Article  Google Scholar 

  25. 25.

    Koohakan P, Ikeda H, Jeanaksorn T, Tojo M, Kusakari SI, Okada K, Sato S (2004) Evaluation of the indigenous microorganisms in soilless culture: occurrence and quantitative characteristics in the different growing systems. Sci. Hortic. 101:179–188

    Article  Google Scholar 

  26. 26.

    Van OEA, Postma J (2000) Prevention of root diseases in closed soilless growing systems by microbial optimisation and slow sand filtration. Acta Hort 532:97–102

    Article  Google Scholar 

  27. 27.

    Renault D, Vallance J, Déniel F, Wery N, Godon JJ, Barbier G, Rey P (2012) Diversity of bacterial communities that colonize the filter units used for controlling plant pathogens in soilless cultures. Microb Ecol 63:170–187

    Article  PubMed  Google Scholar 

  28. 28.

    Jeffers SN, Martin SB (1986) Comparison of two media selective for Phytophthora and Pythium species. Plant Dis. 70:1038–1043

    Article  Google Scholar 

  29. 29.

    Komada H (1975) Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soils. Rev Plant Prot Res 8:114–125

    Google Scholar 

  30. 30.

    Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57:2351–2359

    PubMed  PubMed Central  CAS  Google Scholar 

  31. 31.

    Garland JL (1996) Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol. Biochem. 28:213–221

    Article  CAS  Google Scholar 

  32. 32.

    Grove JA, Kautola H, Javadpour S, Moo-Young M, Anderson WA (2004) Assessment of changes in the microorganism community in a biofilter. Biochem. Eng. J. 18:111–114

    Article  CAS  Google Scholar 

  33. 33.

    Godon JJ, Zumstein E, Dabert P, Habouzit F, Moletta R (1997) Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol. 63:2802–2813

    PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Zemb O, Haegeman B, Delgenes JP, Lebaron P, Godon JJ (2007) SAFUM: statistical analysis of SSCP fingerprints using PCA projections, dendrograms and diversity estimators. Mol. Ecol. Notes 7:767–770

    Article  Google Scholar 

  35. 35.

    Fox J (2005) The R Commander: a basic statistics graphical user interface to R. J Stat Softw 14(9):1–42

    Article  Google Scholar 

  36. 36.

    Ewing B, Hillier L, Wendl M, Green P (1998) Basecalling of automated sequencer traces using phred. Genome Res. 8:175–194

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J. Mol. Biol. 215:403–410

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Roselló-Móra R (2008) The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst. Appl. Microbiol. 31:241–250

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264

    Article  Google Scholar 

  40. 40.

    Colwell RK (2005) EstimateS version 7.5: statistical estimation of species richness and shared species from samples; user’s guide and application published at http://purl.oclc.org/estimates

  41. 41.

    Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8:148–159

    Article  Google Scholar 

  42. 42.

    Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Ann Rev Microbiol 57:369–394

    Article  CAS  Google Scholar 

  43. 43.

    Harris JK, Kelley ST, Pace NR (2004) New perspective on uncultured bacterial phylogenetic division OP11. Appl. Environ. Microbiol. 70:845–849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. 44.

    Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu WT, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    Ferrari B, Winsley T, Ji M, Neilan B (2014) Insights into the distribution and abundance of the ubiquitous Candidatus Saccharibacteria phylum following tag pyrosequencing. Sci. Rep. 4(3957):1–9

    Google Scholar 

  46. 46.

    Yeoh YK, Sekiguchi Y, Parks DH, Hugenholtz P (2015) Comparative genomics of candidate phylum TM6 suggests that parasitism is widespread and ancestral in this lineage. Mol Biol Evol 33:915–927

  47. 47.

    Oyaizu H, Matsumoto S, Minamisawa K, Gamou T (1993) Distribution of rhizobia in leguminous plants surveyed by phylogenetic identification. J. Gen. Appl. Microbiol. 39:339–354

    Article  CAS  Google Scholar 

  48. 48.

    Gao J, Terefework Z, Chen W, Lindström K (2001) Genetic diversity of rhizobia from Astragalus adsurgens growing in different geographical regions of China. J. Biotechnol. 91:155–168

    Article  PubMed  CAS  Google Scholar 

  49. 49.

    Ogita N, Hashidoko Y, Limin SH, Tahara S (2006) Linear 3-hydroxybutyrate tetramer (HB4) produced by Sphingomonas sp. is characterized as a growth promoting factor for some rhizomicrofloral composers. Biosci. Biotechnol. Biochem. 70(9):2325–2329

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Steinberg C, Moulin F, Gaillard P, Gautheron N, Stawiecki K, Bremeersch P, Alabouvette C (1994) Disinfection of drain water in greenhouses using a wet condensation heater. Agronomie 14:627–635

    Article  Google Scholar 

  51. 51.

    Rey P, Déniel F, Vasseur V, Benhamou N, Tirilly Y (2001) Evolution of Pythium spp. populations in soilless cultures and their control by active disinfecting methods. Acta Hort 554:341–348

    Article  Google Scholar 

  52. 52.

    Calvo-Bado LA, Petch G, Parsons NR, Morgan JAW, Pettitt TR, Whipps JM (2006) Microbial community responses associated with the development of oomycete plant pathogens on tomato roots in soilless growing systems. J. Appl. Microbiol. 100:1194–1207

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Campbell CD, Grayston SJ, Hirst DJ (1997) Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. J. Microbiol. Methods 30:33–41

    Article  Google Scholar 

  54. 54.

    Benizri E, Dedourge O, Dibattista-Leboeuf C, Piutti S, Nguyen C, Guckert A (2002) Effect of maize rhizodeposits on soil microbial community structure. Appl. Soil Ecol. 21:261–265

    Article  Google Scholar 

  55. 55.

    Alsanius BW, Khalil S, Hultberg M (1998) Biochemical and chemical characterization of Pythium ultimum. Meded Fac Landbouwwet Univ Gent 63/3a:891–897

    Google Scholar 

  56. 56.

    Vallance J, Déniel F, Barbier G, Guérin-Dubrana L, Benhamou N, Rey P (2012) Influence of Pythium oligandrum on the bacterial communities that colonize the nutrient solutions and the rhizosphere of tomato plants. Can. J. Microbiol. 58:1124–1134

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Regional Councils of Brittany and Pays de la Loire and by the French Ministry of Research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patrice Rey.

Electronic supplementary material

Supplementary Table 1

Abundance of 16S–ribosomal RNA gene phylotypes in the clone libraries constructed from nutrient solutions sampled from influent and effluent of C-filter (iClib, eClib), B-filter (iBlib, eBlib) and P-filter (iPlib, ePlib). For each phylotype affiliation, the closest described relative from the GenBank database with its accession number (in brackets) and the percentage of similarity as given by the Blast program are provided. (DOCX 172 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Renault, D., Déniel, F., Vallance, J. et al. Bacterial Shifts in Nutrient Solutions Flowing Through Biofilters Used in Tomato Soilless Culture. Microb Ecol 76, 169–181 (2018). https://doi.org/10.1007/s00248-017-1117-5

Download citation

Keywords

  • Bacterial communities
  • Soilless culture
  • Recirculating solutions
  • Single-strand conformation polymorphism
  • Community level physiological profiling