Skip to main content
Log in

Screening and Characterization of Phytases from Bacteria Isolated from Chilean Hydrothermal Environments

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Phytases are enzymes involved in organic phosphorus cycling in nature and widely used as feed additives in animal diets. Thermal tolerance is a desired property of phytases. The objectives of this study were to screen and characterize bacterial phytases from Chilean hydrothermal environments. In this study, 60% (30 of 63) of screened thermophilic (60 °C) isolates showed phytase activity in crude protein extracts. The characterization of phytase from two selected isolates (9B and 15C) revealed that both isolates produce phytases with a pH optimum at 5.0. The temperature optimum for phytate dephosphorylation was determined to be 60 and 50 °C for the phytases from the isolates 9B and 15C, respectively. Interestingly, the phytase from the isolate 15C showed a residual activity of 46% after incubation at 90 °C for 20 min. The stepwise dephosphorylation of phytate by protein extracts of the isolates 9B and 15C was verified by HLPC analysis. Finally, the isolates 9B and 15C were identified by partial sequencing of the 16S rRNA gene as members of the genera Bacillus and Geobacillus, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Balaban NP, Suleimanova AD, Valeeva LR, Shakirov EV, Sharipova MR (2016) Structural characteristics and catalytic mechanism of Bacillus β-propeller phytases. Biochemistry 81:785–793

    CAS  PubMed  Google Scholar 

  2. Borgi MA, Boudebbouze S, Mkaouar H, Maguin E, Rhimi M (2015) Bacillus phytases: current status and future prospects. Bioengineered 6:233–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boukhris I, Farhat-Khemakhem A, Blibech M, Bouchaala K, Chouayekh H (2015) Characterization of an extremely salt-tolerant and thermostable phytase from Bacillus amyloliquefaciens US573. Int J Biol Macromol 80:581–587

    Article  CAS  PubMed  Google Scholar 

  4. Choi KY, Noh DO, Cho SH, Lee HK, Suh HJ, Chung S-H (1999) Isolation of a phytase-producing Bacillus sp. KHU-10 and its phytase production. J Microbiol Biotechnol 9:223–226

    CAS  Google Scholar 

  5. Choi YM, Suh HJ, Kim JM (2001) Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J Protein Chem 20:287–292

    Article  CAS  PubMed  Google Scholar 

  6. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16s ribosomal RNA. Nucleic Acids Res 17:7843–7853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Greiner R (2007) Phytate-degrading enzymes: regulation of synthesis in microorganisms and plants. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment/secondary phytate-degrading enzymes: regulation of synthesis in microorganisms and plants. CAB International, Oxfordshire, pp. 78–96

    Chapter  Google Scholar 

  8. Greiner R, Konietzny U, Jany KD (1993) Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys 303:107–113

    Article  CAS  PubMed  Google Scholar 

  9. Gulati HK, Chadha BS, Saini HS (2007) Production and characterization of thermostable alkaline phytase from Bacillus laevolacticus isolated from rhizosphere soil. J Ind Microbiol Biotechnol 34:91–98

    Article  CAS  PubMed  Google Scholar 

  10. Huang H, Luo H, Yang P, Meng K, Wang Y, Yuan T, Bai Y, Yao B (2006) A novel phytase with preferable characteristics from Yersinia intermedia. Biochem Bioph Res Co 350:884–889

    Article  CAS  Google Scholar 

  11. Huang H, Shi P, Wang Y, Luo H, Shao N, Wang G, Yang P, Yao B (2009) Diversity of beta−propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature. Appl Environ Microb 75:1508–1516

    Article  CAS  Google Scholar 

  12. Huang H, Zhang R, Fu D, Luo J, Li Z, Luo H, Shi P, Yang P, Diao Q, Yao B (2011) Diversity, abundance and characterization of ruminal cysteine phytases suggest their important role in phytate degradation. Environ Microbiol 13:747–757

    Article  CAS  PubMed  Google Scholar 

  13. Jain J, Sapna, Singh B (2016) Characteristics and biotechnological applications of bacterial phytases. Process Biochem 51:159–169

    Article  CAS  Google Scholar 

  14. Jorquera MA, Crowley DE, Marschner P, Greiner R, Fernández MT, Romero D, Menezes-Blackburn D, Mora ML (2011) Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microb Ecol 75:163–172

    Article  CAS  Google Scholar 

  15. Jorquera MA, Inostroza NG, Lagos LM, Barra PJ, Marileo LG, Rilling JI, Campos DC, Crowley DE, Richardson AE, Mora ML (2014) Bacterial community structure and detection of putative plant growth-promoting rhizobacteria associated with plants grown in Chilean agro-ecosystems and undisturbed ecosystems. Biol Fertil Soils 50:1141–1153

    Article  Google Scholar 

  16. Kim YO, Lee JK, Kim HK, Yu JH, Oh TK (1998) Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli. FEMS Microbiol Lett 162:185–191

    Article  CAS  PubMed  Google Scholar 

  17. Kumar V, Yadav AN, Verma P, Sangwan P, Saxena A, Kumar K, Singh B (2017) β-Propeller phytases: diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromol 98:595–609

    Article  CAS  PubMed  Google Scholar 

  18. Lim BL, Yeung P, Cheng C, Hill JE (2007) Distribution and diversity of phytate-mineralizing bacteria. The ISME J 1:321–330

    CAS  PubMed  Google Scholar 

  19. Mandviwala T, Khire J (2000) Production of high activity thermostable phytase from thermotolerant Aspergillus niger in solid state fermentation. J Ind Microbiol Biotech 24:237–243

    Article  CAS  Google Scholar 

  20. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microb 64:795–799

    CAS  Google Scholar 

  21. Menezes-Blackburn D, Greiner R (2015) Enzymes used in animal feed: leading technologies and forthcoming developments, In: Cirillo G, Gianfranco–Spizzirri G & Lemma F (eds.) Functional Polymers in Food Science, Scrivener Publishing LLC, 47–73 pp

  22. Menezes-Blackburn D, Jorquera MA, Greiner R, Gianfreda L, Mora ML (2013) Phytases and phytase-labile organic phosphorus in manures and soils. Crit Rev Environ Sci Technol 43:916–954

    Article  CAS  Google Scholar 

  23. Menezes-Blackburn D, Gabler S, Greiner R (2015) Performance of seven commercial phytases in an in vitro simulation of poultry digestive tract. J Agric Food Chem 63:6142–6149

    Article  CAS  PubMed  Google Scholar 

  24. Nakashima BA, Mcallister TA, Sharma R, Selinger LB (2007) Diversity of phytases in the rumen. Microb Ecol 53:82–88

    Article  CAS  PubMed  Google Scholar 

  25. Nam S-J, Kim Y-O, Ko T-K, Kang J-K, Chun K-H, Auh J-H, Lee C-S, Lee I-K, Park S, Oh B-C (2014) Molecular and biochemical characteristics of β-propeller phytase from marine Pseudomonas sp. BS10-3 and its potential application for animal feed additives. J Microbiol Biotechnol 24:1413–1420

    Article  CAS  PubMed  Google Scholar 

  26. Oh B-C, Kim ME, Yun B-S, Choi W-C, Park S-C, Bae S-C, Oh T-K (2006) Ca2+-inositol phosphate chelation mediates the substrate specificity of β-propeller phytase. Biochemistry 45:9531–9539

    Article  CAS  PubMed  Google Scholar 

  27. Parhamfar M, Badoei-Dalfard A, Khaleghi M, Hassanshahian M (2015) Purification and characterization of an acidic, thermophilic phytase from a newly isolated Geobacillus stearothermophilus strain DM12. Prog Biol Sci 5:61–73

    Google Scholar 

  28. Powar VK, Jagannathan V (1982) Purification and properties of phytate-specific phosphatase from Bacillus subtilis. J Bacteriol 151:1102–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rebello S, Jose L, Sindhu R, Aneesh EM (2017) Molecular advancements in the development of thermostable phytases. Appl Microbiol Biotechnol 101:2677–2689

    Article  CAS  PubMed  Google Scholar 

  30. Sajidan WR, Sari EN, Ratriyanto A, Weldekiros H, Greiner R (2015) Phytase-producing bacteria from extreme regions in Indonesia. Braz Arch Biol Technol 58:711–717

    Article  CAS  Google Scholar 

  31. Sandberg AS, Ahderinne R (1986) HPLC method for determination of inositol tri-, tetra-, penta-, and hexaphosphates in foods and intestinal contents. J Food Sci 51:547–550

    Article  CAS  Google Scholar 

  32. Sato VS, Jorge JA, Guimarães LH (2016) Characterization of a thermotolerant phytase produced by Rhizopus microsporus var. microsporus biofilm on an inert support using sugarcane bagasse as carbon source. Appl Biochem Biotechnol 179:610–624

    Article  CAS  PubMed  Google Scholar 

  33. Shimizu M (1992) Purification and characterization of phytase from Bacillus subtilis (Natto) N-77. Biosci Biotechnol Biochem 56:1266–1269

    Article  CAS  Google Scholar 

  34. Tye A, Siu F, Leung T, Lim B (2002) Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Appl Microbiol Biot 59:190–197

    Article  CAS  Google Scholar 

  35. Yu P, Chen Y (2013) Purification and characterization of a novel neutral and heat-tolerant phytase from a newly isolated strain Bacillus nealsonii ZJ0702. BMC Biotechnol 13:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang R, Yang P, Huang H, Shi P, Yuan T, Yao B (2011) Two types of phytases (histidine acid phytase and beta-propeller phytase) in Serratia sp. TN49 from the gut of Batocera horsfieldi (Coleoptera) larvae. Curr Microbiol 63:408–415

    Article  CAS  PubMed  Google Scholar 

  37. Zhang R, Yang P, Huang H, Yuan T, Shi P, Meng K, Yao B (2011) Molecular and biochemical characterization of a new alkaline β-propeller phytase from the insect symbiotic bacterium Janthinobacterium sp. TN115. Appl Microbiol Biotechnol 92:317–325

    Article  CAS  PubMed  Google Scholar 

  38. Zhou JR, Erdman Jr JW (1995) Phytic acid in health and disease. Crit Rev Food Sci Nutr 35:495–508

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by cooperative project (code PCCI 1-2011) funded by The National Commission for Scientific and Technological Research (CONICYT, Chile) and Deutscher Akademischer Austauschdienst German (DAAD, Germany). This work was also partial financed with funds from CONICYT-PCCI (code USA2013-0010) and The National Fund for Scientific and Technological Development (FONDECYT, Chile; projects no. 1120505 and 1160302). J.J. Acuña acknowledges FONDECYT programs (projects no. 3140620 and 11160112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milko A. Jorquera.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jorquera, M.A., Gabler, S., Inostroza, N.G. et al. Screening and Characterization of Phytases from Bacteria Isolated from Chilean Hydrothermal Environments. Microb Ecol 75, 387–399 (2018). https://doi.org/10.1007/s00248-017-1057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1057-0

Keywords

Navigation