Advertisement

Microbial Ecology

, Volume 75, Issue 2, pp 364–374 | Cite as

Diel Rhythm Does Not Shape the Vertical Distribution of Bacterial and Archaeal 16S rRNA Transcript Diversity in Intertidal Sediments: a Mesocosm Study

  • C. Lavergne
  • M. Hugoni
  • C. Hubas
  • D. Debroas
  • C. Dupuy
  • H. Agogué
Environmental Microbiology

Abstract

In intertidal sediments, circadian oscillations (i.e., tidal and diel rhythms) and/or depth may affect prokaryotic activity. However, it is difficult to distinguish the effect of each single force on active community changes in these natural and complex intertidal ecosystems. Therefore, we developed a tidal mesocosm to control the tidal rhythm and test whether diel fluctuation or sediment depth influence active prokaryotes in the top 10 cm of sediment. Day- and nighttime emersions were compared as they are expected to display contrasting conditions through microphytobenthic activity in five different sediment layers. A multiple factor analysis revealed that bacterial and archaeal 16S ribosomal RNA (rRNA) transcript diversity assessed by pyrosequencing was similar between day and night emersions. Potentially active benthic Bacteria were highly diverse and influenced by chlorophyll a and phosphate concentrations. While in oxic and suboxic sediments, Thaumarchaeota Marine Group I (MGI) was the most active archaeal phylum, suggesting the importance of the nitrogen cycle in muddy sediments, in anoxic sediments, the mysterious archaeal C3 group dominated the community. This work highlighted that active prokaryotes organize themselves vertically within sediments independently of diel fluctuations suggesting adaptation to physicochemical-specific conditions associated with sediment depth.

Keywords

Archaea Bacteria Active community Intertidal mudflat Mesocosm Diel cycle Microphytobenthic biofilm 

Notes

Acknowledgements

This research was supported by a PhD grant from the Charente Maritime Department and by the national program CPER 2006-2013 (Contrat Projet Etat Région) of Charente Maritime, the French national program EC2CO (CAPABIOC, 2012-2014), and the CNRS organism. The tidal mesocosms were built by M. Prineau and N. Lachaussée. We acknowledge the Molecular and the Cytometry Core Facilities at LIENSs laboratory. The authors are grateful to A. Leynaert (LEMAR, Brest, France) for the rhizon technique, to P. Pineau (LIENSs, La Rochelle, France) for the nutrient measurement, and to N. Lachaussée (LIENSs, La Rochelle, France) for field sampling. We also thank V. Becquet, C. Dussud, M. Bréret, J.C. Gama de Matos, and J. Lavaud (LIENSs, La Rochelle, France) who help us during the experiment. We thank N. Taib and JC. Charvy (LMGE, Clermont-Ferrand, France) for their help in phylogenetic analyses.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

Supplementary material

248_2017_1048_MOESM1_ESM.pdf (940 kb)
ESM 1 (PDF 940 kb)

References

  1. 1.
    Kirchman DL, Dittel AI, Malmstrom RR, Cottrell MT (2005) Biogeography of major bacterial groups in the Delaware Estuary. Limnol Oceanogr 50:1697–1706CrossRefGoogle Scholar
  2. 2.
    Böer S, Hedtkamp SI, van Beusekom JE, et al. (2009) Time- and sediment depth-related variations in bacterial diversity and community structure in subtidal sands. ISME J 3:780–791. doi: 10.1038/ismej.2009.29 CrossRefPubMedGoogle Scholar
  3. 3.
    Herlemann DPR, Labrenz M, Jurgens K, et al. (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579 http://www.nature.com/ismej/journal/v5/n10/suppinfo/ismej201141s1.html CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Liu J, Yang H, Zhao M, Zhang XH (2014) Spatial distribution patterns of benthic microbial communities along the Pearl Estuary, China. Syst Appl Microbiol 37:578–589. doi: 10.1016/j.syapm.2014.10.005 CrossRefPubMedGoogle Scholar
  5. 5.
    Gobet A, Boer S, Huse SM, et al. (2012) Diversity and dynamics of rare and of resident bacterial populations in coastal sands. ISME J 6:542–553. doi: 10.1038/ismej.2011.132 CrossRefPubMedGoogle Scholar
  6. 6.
    Consalvey M, Paterson DM, Underwood GJC (2004) The ups and downs of life in a benthic biofilm: migration of benthic diatoms. Diatom Res 19:181–202. doi: 10.1080/0269249X.2004.9705870 CrossRefGoogle Scholar
  7. 7.
    Ritzrau W, Graf G (1992) Increase of microbial biomass in the benthic turbidity zone of Kiel Bight after resuspension by a storm event. Limnol Oceanogr 37:1081–1086. doi: 10.4319/lo.1992.37.5.1081 CrossRefGoogle Scholar
  8. 8.
    Friend PL, Collins MB, Holligan PM (2003) Day–night variation of intertidal flat sediment properties in relation to sediment stability. Estuar Coast Shelf Sci 58:663–675. doi: 10.1016/S0272-7714(03)00178-1 CrossRefGoogle Scholar
  9. 9.
    Friend PL, Lucas CH, Rossington SK (2005) Day–night variation of cohesive sediment stability. Estuar Coast Shelf Sci 64:407–418CrossRefGoogle Scholar
  10. 10.
    Guizien K, Dupuy C, Ory P, et al. (2014) Microorganism dynamics during a rising tide: disentangling effects of resuspension and mixing with offshore waters above an intertidal mudflat. J Mar Syst 129:178–188. doi: 10.1016/j.jmarsys.2013.05.010 CrossRefGoogle Scholar
  11. 11.
    Harrison SJ, Phizacklea AP (1987) Vertical temperature gradients in muddy intertidal sediments in the forth estuary, Scotland1. Limnol Oceanogr 32:954–963. doi: 10.4319/lo.1987.32.4.0954 CrossRefGoogle Scholar
  12. 12.
    Montagna PA, Bauer JE, Hardin D, Spies RB (1989) Vertical distribution of microbial and meiofaunal populations in sediments of a natural coastal hydrocarbon seep. J Mar Res 47:657–680. doi: 10.1357/002224089785076226 CrossRefGoogle Scholar
  13. 13.
    Edlund A, Hårdeman F, Jansson JK, Sjöling S (2008) Active bacterial community structure along vertical redox gradients in Baltic Sea sediment. Environ Microbiol 10:2051–2063. doi: 10.1111/j.1462-2920.2008.01624.x CrossRefPubMedGoogle Scholar
  14. 14.
    Fan X, Xing P (2016) The vertical distribution of sediment archaeal community in the “Black Bloom” Disturbing Zhushan Bay of Lake Taihu Archaea. doi: 10.1155/2016/8232135
  15. 15.
    Hewson I, Vargo GA, Fuhrman JA (2003) Bacterial diversity in shallow oligotrophic marine benthos and overlying waters: effects of virus infection, containment, and nutrient enrichment. Microb Ecol 46:322–336. doi: 10.1007/s00248-002-1067-3 CrossRefPubMedGoogle Scholar
  16. 16.
    Kristensen E (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426:1–24. doi: 10.1023/A:1003980226194
  17. 17.
    Laverock B, Gilbert JA, Tait K, et al. (2011) Bioturbation: impact on the marine nitrogen cycle. Biochem Soc Trans 39:315–320CrossRefPubMedGoogle Scholar
  18. 18.
    Passarelli C, Olivier F, Paterson DM, et al. (2014) Organisms as cooperative ecosystem engineers in intertidal flats. J Sea Res 92:92–101. doi: 10.1016/j.seares.2013.07.010 CrossRefGoogle Scholar
  19. 19.
    Risgaard-Petersen N (2003) Coupled nitrification-denitrification in autotrophic and heterotrophic estuarine sediments: on the influence of benthic microalgae. Limnol Oceanogr 48:93–105. doi: 10.4319/lo.2003.48.1.0093 CrossRefGoogle Scholar
  20. 20.
    Hochard S, Pinazo C, Grenz C, et al. (2010) Impact of microphytobenthos on the sediment biogeochemical cycles: a modeling approach. Ecol Model 221:1687–1701. doi: 10.1016/j.ecolmodel.2010.04.002 CrossRefGoogle Scholar
  21. 21.
    Admiraal W (1984) The ecology of estuarine sediment inhabiting diatoms. Prog Phycol Res 3:269–314Google Scholar
  22. 22.
    Blanchard GF, Guarini J-M, Orvain F, Sauriau P-G (2001) Dynamic behaviour of benthic microalgal biomass in intertidal mudflats. J Exp Mar Bio Ecol 264:85–100. doi: 10.1016/s0022-0981(01)00312-4 CrossRefGoogle Scholar
  23. 23.
    Underwood GJC, Paterson DM (2003) The importance of extracellular carbohydrate production by marine epipelic diatoms. Adv Bot Res 40:183–240. doi: 10.1016/S0065-2296(05)40005-1 CrossRefGoogle Scholar
  24. 24.
    Herlory O, Guarini J-M, Richard P, Blanchard G (2004) Microstructure of microphytobenthic biofilm and its spatio-temporal dynamics in an intertidal mudflat (Aiguillon Bay, France). Mar Ecol Prog Ser 282:33–44CrossRefGoogle Scholar
  25. 25.
    Haynes K, Hofmann TA, Smith CJ, et al. (2007) Diatom-derived carbohydrates as factors affecting bacterial community composition in estuarine sediments. Appl Environ Microbiol 73:6112–6124. doi: 10.1128/aem.00551-07 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Saburova MA, Polikarpov IG (2003) Diatom activity within soft sediments: behavioural and physiological processes. Mar Ecol Prog Ser 251:15–126CrossRefGoogle Scholar
  27. 27.
    Thornton DCO, Underwood GJ, Nedwell DB (1999) Effect of illumination and emersion period on the exchange of ammonium across the estuarine sediment-water interface. Mar Ecol Prog Ser 184:11–20. doi: 10.3354/meps184011 CrossRefGoogle Scholar
  28. 28.
    Lindström ES, Langenheder S (2012) Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep 4:1–9. doi: 10.1111/j.1758-2229.2011.00257.x CrossRefPubMedGoogle Scholar
  29. 29.
    Michaud E, Aller RC, Stora G (2010) Sedimentary organic matter distributions, burrowing activity, and biogeochemical cycling: natural patterns and experimental artifacts. Estuar Coast Shelf Sci 90:21–34CrossRefGoogle Scholar
  30. 30.
    Agogué H, Mallet C, Orvain F, et al. (2014) Bacterial dynamics in a microphytobenthic biofilm: a tidal mesocosm approach. J Sea Res 92:36–45. doi: 10.1016/j.seares.2014.03.003 CrossRefGoogle Scholar
  31. 31.
    Lorenzen CJ (1966) A method for the continuous measurement of in vivo chlorophyll concentration. Deep Res Oceanogr Abstr 13:223–227CrossRefGoogle Scholar
  32. 32.
    Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedPubMedCentralGoogle Scholar
  33. 33.
    Einen J, Thorseth IH, Øvreås L (2008) Enumeration of Archaea and Bacteria in seafloor basalt using real-time quantitative PCR and fluorescence microscopy. FEMS Microbiol Lett 282:182–187. doi: 10.1111/j.1574-6968.2008.01119.x CrossRefPubMedGoogle Scholar
  34. 34.
    Muyzer G, Teske A, Wirsen C, Jannasch H (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172. doi: 10.1007/bf02529967 CrossRefPubMedGoogle Scholar
  35. 35.
    Herfort L, Schouten S, Abbas B, et al. (2007) Variations in spatial and temporal distribution of Archaea in the North Sea in relation to environmental variables. FEMS Microbiol Ecol 62:242–257. doi: 10.1111/j.1574-6941.2007.00397.x CrossRefPubMedGoogle Scholar
  36. 36.
    Casamayor EO, Massana R, Benlloch S, et al. (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348. doi: 10.1046/j.1462-2920.2002.00297.x CrossRefPubMedGoogle Scholar
  37. 37.
    Giongo A, Crabb DB, Davis-Richardson AG, et al. (2010) PANGEA: pipeline for analysis of next generation amplicons. Isme J 4:852–861. doi: 10.1038/ismej.2010.16 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Edgar RC, Haas BJ, Clemente JC, et al. (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi: 10.1093/bioinformatics/btr381 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kim M, Morrison M, Yu Z (2011) Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J Microbiol Methods 84:81–87. doi: 10.1016/j.mimet.2010.10.020 CrossRefPubMedGoogle Scholar
  40. 40.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi: 10.1093/bioinformatics/btq461 CrossRefPubMedGoogle Scholar
  41. 41.
    Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650. doi: 10.1093/molbev/msp077 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pruesse E, Quast C, Knittel K, et al. (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196. doi: 10.1093/nar/gkm864 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Taib N, Mangot J-F, Domaizon I, et al. (2013) Phylogenetic affiliation of SSU rRNA genes generated by massively parallel sequencing: new insights into the freshwater protist diversity. PLoS One 8:e58950. doi: 10.1371/journal.pone.0058950 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Legendre P, Legendre L (1998) Numerical ecology. Developments in environmental modelling. Elsevier Science & Technology, AmsterdamGoogle Scholar
  45. 45.
    Dray S, Legendre P, Blanchet G (2013) packfor: Forward Selection with permutation (Canoco p.46). R package version 0.0-8/r109. http://R-Forge.R-project.org/projects/sedar/
  46. 46.
    Escofier B, Pagès J (1994) Multiple factor analysis (AFMULT package). Comput Stat Data Anal 18:121–140. doi: 10.1016/0167-9473(94)90135-X CrossRefGoogle Scholar
  47. 47.
    Husson F, Josse J, Lê S, Mazet J (2007) FactoMineR: Factor Analysis and Data Mining with R. R package version 1.04. URL http://CRAN.R-project.org/package=FactoMineR
  48. 48.
    Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20CrossRefGoogle Scholar
  49. 49.
    Oksanen J, Blanchet FG, Kindt R, et al (2013) vegan: community ecology package. R Package version 2.0–7. https://cran.r-project.org/web/packages/vegan/index.html
  50. 50.
    Spang A, Saw JH, Jørgensen SL, et al. (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. doi: 10.1038/nature14447
  51. 51.
    Kubo K, Lloyd KG, Biddle JF, et al. (2012) Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME J 6:1949–1965. doi: 10.1038/ismej.2012.37 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci 104:11436–11440. doi: 10.1073/pnas.0611525104 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zinger L, Amaral-Zettler LA, Fuhrman JA, et al. (2011) Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One 6:e24570. doi: 10.1371/journal.pone.0024570 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kopf A, Bicak M, Kottmann R, et al. (2015) The ocean sampling day consortium. Gigascience 4:1–5. doi: 10.1186/s13742-015-0066-5 CrossRefGoogle Scholar
  55. 55.
    Pesant S, Not F, Picheral M, et al. (2015) Open science resources for the discovery and analysis of Tara Oceans data. Sci Data. doi: 10.1038/sdata.2015.23
  56. 56.
    Poulin M, Massé G, Belt ST, et al. (2004) Morphological, biochemical and molecular evidence for the transfer of Gyrosigma nipkowii Meister to the genus Haslea (Bacillariophyta). Eur J Phycol 39:181–195. doi: 10.1080/0967026042000202136 CrossRefGoogle Scholar
  57. 57.
    Blazewicz SJ, Barnard RL, Daly RA, Firestone MK (2013) Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J 7:2061–2068. doi: 10.1038/ismej.2013.102 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hugoni M, Agogué H, Taib N, et al. (2015) Temporal dynamics of active prokaryotic Nitrifiers and archaeal communities from river to sea. Microb Ecol 70:473–483. doi: 10.1007/s00248-015-0601-z CrossRefPubMedGoogle Scholar
  59. 59.
    Campbell LI, Rota-Stabelli O, Edgecombe GD, et al. (2011) MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci U S A 108:15920–15924. doi: 10.1073/pnas.1105499108 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lavergne C, Agogué H, Leynaert A, et al. (2017) Factors influencing prokaryotes in an intertidal mudflat and the resulting depth gradients. Estuar Coast Shelf Sci 189C:74–83. doi: 10.1016/j.ecss.2017.03.008 CrossRefGoogle Scholar
  61. 61.
    Brock J, Schulz-Vogt HN (2011) Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain. ISME J 5:497–506. doi: 10.1038/ismej.2010.135 CrossRefPubMedGoogle Scholar
  62. 62.
    Sun MY, Dafforn KA, Johnston EL, Brown MV (2013) Core sediment bacteria drive community response to anthropogenic contamination over multiple environmental gradients. Environ Microbiol 15:2517–2531. doi: 10.1111/1462-2920.12133 CrossRefPubMedGoogle Scholar
  63. 63.
    Bowman JP, McCuaig RD (2003) Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69:2463–2483. doi: 10.1128/aem.69.5.2463-2483.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ravenschlag K, Sahm K, Knoblauch C, et al. (2000) Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl Environ Microbiol 66:3592–3602. doi: 10.1128/aem.66.8.3592-3602.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Pfeffer C, Larsen S, Song J, et al. (2012) Filamentous bacteria transport electrons over centimetre distances. Nature 491:218–221 http://www.nature.com/nature/journal/v491/n7423/abs/nature11586.html#supplementary-information CrossRefPubMedGoogle Scholar
  66. 66.
    Lee YK, Hong SG, Cho HH, et al. (2007) Dasania marina gen. nov., sp. nov., of the order Pseudomonadales, isolated from Arctic marine sediment. J Microbiol 45:505PubMedGoogle Scholar
  67. 67.
    Fuerst JA, Sagulenko E (2011) Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Micro 9:403–413CrossRefGoogle Scholar
  68. 68.
    Schlesner H (1994) The development of media suitable for the microorganisms morphologically resembling Planctomyces spp., Pirellula spp., and other Planctomycetales from various aquatic habitats using dilute media. Syst Appl Microbiol 17:135–145. doi: 10.1016/S0723-2020(11)80042-1 CrossRefGoogle Scholar
  69. 69.
    Papineau D, Walker JJ, Mojzsis SJ, Pace NR (2005) Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol 71:4822–4832. doi: 10.1128/AEM.71.8.4822-4832.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kulichevskaya IS, Ivanova AO, Baulina OI, et al. (2008) Singulisphaera acidiphila gen. nov., sp. nov., a non-filamentous, Isosphaera-like planctomycete from acidic northern wetlands. Int J Syst Evol Microbiol 58:1186–1193. doi: 10.1099/ijs.0.65593-0 CrossRefPubMedGoogle Scholar
  71. 71.
    Giovannoni SJ, Schabtach E, Castenholz RW (1987) Isosphaera pallida, gen. and comb. nov., a gliding, budding eubacterium from hot springs. Arch Microbiol 147:276–284. doi: 10.1007/BF00463488 CrossRefGoogle Scholar
  72. 72.
    Strous M, Fuerst JA, Kramer EHM, et al. (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449CrossRefPubMedGoogle Scholar
  73. 73.
    Devol AH (2003) Nitrogen cycle: solution to a marine mystery. Nature 422:575–576CrossRefPubMedGoogle Scholar
  74. 74.
    Kuenen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Micro 6:320–326CrossRefGoogle Scholar
  75. 75.
    Kartal B, Kuypers MMM, Lavik G, et al. (2007) Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ Microbiol 9:635–642. doi: 10.1111/j.1462-2920.2006.01183.x CrossRefPubMedGoogle Scholar
  76. 76.
    Jetten MSM, van Niftrik L, Strous M, et al. (2009) Biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol Biol 44:65–84. doi: 10.1080/10409230902722783 CrossRefPubMedGoogle Scholar
  77. 77.
    Agogué H, Brink M, Dinasquet J, Herndl GJ (2008) Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature 456:788–791. doi: 10.1038/nature07535 CrossRefPubMedGoogle Scholar
  78. 78.
    Santoro AE, Casciotti KL, Francis CA (2010) Activity, abundance and diversity of nitrifying archaea and bacteria in the central California current. Environ Microbiol 12:1989–2006. doi: 10.1111/j.1462-2920.2010.02205.x CrossRefPubMedGoogle Scholar
  79. 79.
    Villanueva L, Schouten S, Sinninghe Damsté JS (2015) Depth-related distribution of a key gene of the tetraether lipid biosynthetic pathway in marine Thaumarchaeota. Environ Microbiol 17:3527–3539. doi: 10.1111/1462-2920.12508 CrossRefPubMedGoogle Scholar
  80. 80.
    Smith JM, Casciotti KL, Chavez FP, Francis CA (2014) Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters. ISME J 8:1704–1714. doi: 10.1038/ismej.2014.11 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Damashek J, Smith JM, Mosier AC, Francis CA (2015) Benthic ammonia oxidizers differ in community structure and biogeochemical potential across a riverine delta. Front Microbiol 5:743. doi: 10.3389/fmicb.2014.00743 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Francis CA, Robert KJ, Beman JM, et al. (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci 102:14683–14688CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Smith JM, Mosier A, Francis CA (2014) Spatiotemporal relationships between the abundance, distribution, and potential activities of ammonia-oxidizing and denitrifying microorganisms in intertidal sediments. Microb Ecol 1–12. doi: 10.1007/s00248-014-0450-1Google Scholar
  84. 84.
    Auguet J-C, Casamayor EO (2013) Partitioning of Thaumarchaeota populations along environmental gradients in high mountain lakes. FEMS Microbiol Ecol 84:154–164. doi: 10.1111/1574-6941.12047 CrossRefPubMedGoogle Scholar
  85. 85.
    Hugoni M, Domaizon I, Taib N, et al. (2015) Temporal dynamics of active Archaea in oxygen-depleted zones of two deep lakes. Environ Microbiol Rep 7:321–329. doi: 10.1111/1758-2229.12251 CrossRefPubMedGoogle Scholar
  86. 86.
    Jung M-Y, Park S-J, Kim S-J, et al. (2014) A mesophilic, autotrophic, ammonia-oxidizing archaeon of Thaumarchaeal group I.1a cultivated from a deep oligotrophic soil horizon. Appl Environ Microbiol 80:3645–3655. doi: 10.1128/aem.03730-13 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Prosser JI, Nicol GW, Venter JC, et al. (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531. doi: 10.1016/j.tim.2012.08.001 CrossRefPubMedGoogle Scholar
  88. 88.
    Dang H, Zhou H, Yang J, et al. (2013) Thaumarchaeotal signature gene distribution in sediments of the northern South China sea: an indicator of the metabolic intersection of the marine carbon, nitrogen, and phosphorus cycles? Appl Environ Microbiol 79:2137–2147. doi: 10.1128/AEM.03204-12 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Bale NJ, Villanueva L, Hopmans EC, et al. (2013) Different seasonality of pelagic and benthic Thaumarchaeota in the North Sea. Biogeosciences 10:7195–7206. doi: 10.5194/bg-10-7195-2013 CrossRefGoogle Scholar
  90. 90.
    Stauffert M, Duran R, Gassie C, Cravo-Laureau C (2014) Response of archaeal communities to oil spill in bioturbated mudflat sediments. Microb Ecol 67:108–119. doi: 10.1007/s00248-013-0288-y CrossRefPubMedGoogle Scholar
  91. 91.
    Meng J, Xu J, Qin D, et al. (2014) Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J 8:650–659. doi: 10.1038/ismej.2013.174 CrossRefPubMedGoogle Scholar
  92. 92.
    Hawkins AN, Johnson KW, Bräuer SL (2014) Southern Appalachian peatlands support high archaeal diversity. Microb Ecol 67:587–602. doi: 10.1007/s00248-013-0352-7 CrossRefPubMedGoogle Scholar
  93. 93.
    Hirayama H, Sunamura M, Takai K, et al. (2007) Culture-dependent and -independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island, Japan. Appl Environ Microbiol 73:7642–7656. doi: 10.1128/aem.01258-07 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Wemheuer B, Taube R, Akyol P, et al. (2013) Microbial diversity and biochemical potential encoded by thermal spring metagenomes derived from the Kamchatka peninsula. Archaea 2013:13. doi: 10.1155/2013/136714 CrossRefGoogle Scholar
  95. 95.
    Fang J, Shizuka A, Kato C, Schouten S (2006) Microbial diversity of cold-seep sediments in Sagami Bay, Japan, as determined by 16S rRNA gene and lipid analyses. FEMS Microbiol Ecol 57:429–441. doi: 10.1111/j.1574-6941.2006.00126.x CrossRefPubMedGoogle Scholar
  96. 96.
    Dang H, Luan X-W, Chen R, et al. (2010) Diversity, abundance and distribution of amoA-encoding archaea in deep-sea methane seep sediments of the Okhotsk Sea. FEMS Microbiol Ecol 72:370–385. doi: 10.1111/j.1574-6941.2010.00870.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Université de La Rochelle – CNRS, UMR 7266, LIENSsLa RochelleFrance
  2. 2.School of Biochemical EngineeringPontificia Universidad Católica ValparaísoValparaísoChile
  3. 3.CNRS, UMR5557 Ecologie MicrobienneUniversité Lyon 1Villeurbanne CedexFrance
  4. 4.Muséum National d’Histoire Naturelle, UMR BOREASorbonne UniversitésConcarneauFrance
  5. 5.Clermont Université, Université Blaise PascalClermont-FerrandFrance
  6. 6.CNRS, UMR 6023, LMGEAubièreFrance

Personalised recommendations