Abstract
Both diet and host phylogeny shape the gut microbial community, and separating out the effects of these variables can be challenging. In this study, high-throughput sequencing was used to evaluate the impact of diet and phylogeny on the gut microbiota of nine colobine monkey species (N = 64 individuals). Colobines are leaf-eating monkeys that fare poorly in captivity—often exhibiting gastrointestinal (GI) problems. This study included eight Asian colobines (Rhinopithecus brelichi, Rhinopithecus roxellana, Rhinopithecus bieti, Pygathrix nemaeus, Nasalis larvatus, Trachypithecus francoisi, Trachypithecus auratus, and Trachypithecus vetulus) and one African colobine (Colobus guereza). Monkeys were housed at five different captive institutes: Panxi Wildlife Rescue Center (Guizhou, China), Beijing Zoo, Beijing Zoo Breeding Center, Singapore Zoo, and Singapore Zoo Primate Conservation Breeding Center. Captive diets varied widely between institutions, but within an institution, all colobine monkey species were fed nearly identical or identical diets. In addition, four monkey species were present at multiple captive institutes. This allowed us to parse the effects of diet and phylogeny in these captive colobines. Gut microbial communities clustered weakly by host species and strongly by diet, and overall, colobine phylogenetic relationships were not reflected in gut microbiota analyses. Core microbiota analyses also identified several key taxa—including microbes within the Ruminococcaceae and Lachnospiraceae families—that were shared by over 90% of the monkeys in this study. Microbial species within these families include many butyrate producers that are important for GI health. These results highlight the importance of diet in captive colobines.
This is a preview of subscription content, access via your institution.




Change history
11 September 2017
An erratum to this article has been published.
References
Ley R, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes Science 320:1647–1651
Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, Mao Y, Zhang X, Pang X, Wei C, Zhao G, Chen Y, Zhao L (2010) Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice ISME J 4:232–241. doi:10.1038/ismej.2009.112
Zhao L, Wang G, Siegel P, He C, Wang H, Zhao W, Zhai Z, Tian F, Zhao J, Zhang H, Sun Z, Chen W, Zhang Y, Meng H (2013) Quantitative genetic background of the host influences gut microbiomes in chickens Sci Rep 3. doi:10.1038/srep01163
McKnite AM, Perez-Munoz ME, Lu L, Williams EG, Brewer S, Andreux PA, Bastiaansen JWM, Wang X, Kachman SD, Auwerx J, Williams RW, Benson AK, Peterson DA, Ciobanu DC (2012) Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits PLoS One 7:e39191. doi:10.1371/journal.pone.0039191
Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, Spector TD, Keinan A, Ley RE, Gevers D, Clark AG (2015) Host genetic variation impacts microbiome composition across human body sites Genome Biol 16:191. doi:10.1186/s13059-015-0759-1
Wang M, Radlowski EC, Monaco MH, Fahey GC, Gaskins HR, Donovan SM (2013) Mode of delivery and early nutrition modulate microbial colonization and fermentation products in neonatal piglets J Nutr 143:795–803. doi:10.3945/jn.112.173096
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet J, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa Proc Natl Acad Sci U S A 107:14691–14696. doi:10.1073/pnas.1005963107
Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH (2013) The influence of diet on the gut microbiota Pharmacol Res 69:52–60. doi:10.1016/j.phrs.2012.10.020
Burin G, Kissling WD, Guimarães PR, Şekercioğlu ÇH, Quental TB (2016) Omnivory in birds is a macroevolutionary sink Nat Commun 7:11250. doi:10.1038/ncomms11250
Delsuc F, Metcalf JL, Parfrey LW, Song SJ, González A, Knight R (2013) Convergence of gut microbiomes in myrmecophagous mammals Mol Ecol 23:1301–1317. doi:10.1111/mec.12501
Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, Henrissat B, Knight R, Gordon JI (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans Science 332:970–974. doi:10.1126/science.1198719
Ochman H, Worobey M, Kuo C-H, Ndjango J-BN, Peeters M, Hahn BH, Hugenholtz P (2010) Evolutionary relationships of wild hominids recapitulated by gut microbial communities PLoS Biol 8:e1000546. doi:10.1371/journal.pbio.1000546
Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish ISME J 5:1595–1608. doi:10.1038/ismej.2011.38
Sanders JG, Powell S, Kronauer DJC, Vasconcelos HL, Frederickson ME, Pierce NE (2014) Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes Mol Ecol 23:1268–1283. doi:10.1111/mec.12611
Tzeng T-D, Pao Y-Y, Chen P-C, Weng FC-H, Jean WD, Wang D (2015) Effects of host phylogeny and habitats on gut microbiomes of oriental river prawn (Macrobrachium nipponense) PLoS One 10:e0132860. doi:10.1371/journal.pone.0132860
Carrillo-Araujo M, Taş N, Alcántara-Hernández RJ, Gaona O, Schondube JE, Medellín RA, Jansson JK, Falcón LI (2015) Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies Front Microbiol 6:447. doi:10.3389/fmicb.2015.00447
Chivers D (1994) Functional anatomy of the gastrointestinal tract. In: Davies AG, Oates JF (eds) Colobine monkeys: their ecology, behaviour and evolution. Cambridge University Press, Cambridge, pp. 205–227
Kay RNB, Davies AG (1994) Digestive physiology. In: Davies AG, Oates J (eds) Colobine monkeys: their ecology, behavior and evolution. Cambridge University Press, Cambridge, pp. 229–249
Caton JM (1998) The morphology of the gastrointestinal tract of Pygathrix nemaeus (Linneaus, 1771). In: Jablonski NG (ed) The natural history of the doucs and snub-nosed monkeys. World Scientific Publishing Co., Singapore, pp. 129–154
Lambert JE (1998) Primate digestion: interactions among anatomy, physiology, and feeding ecology Evol Anthropol:8–20
Nijboer J, Clauss M (2006) The digestive physiology of colobine primates. In: Nijboer J (ed) Fibre intake and faeces quality in leaf-eating primates. Utrecht Publishing and Archiving Service, The Netherlands, pp. 9–28
Bauchop T, Martucci RW (1968) Ruminant-like digestion of the langur monkey Science 161:698–700
Yildirim S, Yeoman C, Sipos M, Torralba M, Wilson B, Goldberg T, Stumpf R, Leigh S, White B, Nelson K (2010) Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities PLoS One 5:e13963
Wu C, Yang F, Gao R, Huang Z, Xu B, Dong Y, Hong T, Tang X (2010) Study of fecal bacterial diversity in Yunnan snub-nosed monkey (Rhinopithecus bieti) using phylogenetic analysis of cloned 16S rRNA gene sequences Af J Biotech 9:6278–6289
Amato KR, Metcalf JL, Song SJ, Hale VL, Clayton J, Ackermann G, Humphrey G, Niu K, Cui D, Zhao H, Schrenzel MD, Tan CL, Knight R, Braun J (2016) Using the gut microbiota as a novel tool for examining colobine primate GI health Glob Ecol Conserv 7:225–237. doi:10.1016/j.gecco.2016.06.004
Edwards M (1997) Leaf-eating primates: nutrition and dietary husbandry. Nutrition Advisory Group Handbook
Agoramoorthy G, Alagappasamy C, Hsu MJ (2004) Can proboscis monkeys be successfully maintained in captivity? A case of swings and roundabouts Zoo Biol 23:433–544. doi:10.1002/zoo.20018
Davies AG, Oates J (1994) Colobine monkeys: their ecology, behavior, and evolution. Cambridge University Press, New York,
Sutherland-Smith M, Janssen D, Lowenstine L (1998) Gastric analyses of colobine primates. AAZV Conference Proceedings: 136–139
Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA, Travis DA, Long HT, Tuan BV, Minh VV, Cabana F, Nadler T, Toddes B, Murphy T, Glander KE, Johnson TJ, Knights D (2016) Captivity humanizes the primate microbiome Proc Natl Acad Sci 113:10376–10381. doi:10.1073/pnas.1521835113
Amato K, Yeoman C, Kent A, Righini N, Carbonero F, Estrada A, Gaskins H, Stumpf R, Yildirim S, Torralba M, Gillis M, Wilson B, Nelson K, White B, Leigh S (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes ISME J 7:1344–1353. doi:10.1038/ismej.2013.16
Wang XP, Yu L, Roos C, Ting N, Chen CP, Wang J, Zhang Y (2012) Phylogenetic relationships among the colobine monkeys revisited: new insights from analyses of complete mt genomes and 44 nuclear non-coding markers PLoS One 7:e36274
Liedigk R, Yang M, Jablonski NG, Momberg F, Geissmann T, Lwin N, Hla TH, Liu Z, Wong B, Ming L, Yongcheng L, Zhang Y-PP, Nadler T, Zinner D, Roos C (2012) Evolutionary history of the odd-nosed monkeys and the phylogenetic position of the newly described Myanmar snub-nosed monkey Rhinopithecus strykeri PLoS One 7:e37418. doi:10.1371/journal.pone.0037418
Hale VL, Tan CL, Knight R, Amato KR (2015) Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks J Microbiol Methods 113:16–26. doi:10.1016/j.mimet.2015.03.021
Hale VL, Tan CL, Niu K, Yang Y, Cui D, Zhao H, Knight R, Amato KR (2016) Effects of field conditions on fecal microbiota J Microbiol Methods 130:180–188. doi:10.1016/j.mimet.2016.09.017
Gilbert JA, Folker M, Dion A, Pavan B, Brown CT, Christopher TB, Narayan D, Jonathan AE, Dirk E, Dawn F, Wu F, Daniel H, Janet J, Rob K, James K, Eugene K, Kostas K, Joel K, Nikos K, Rachel M, Alice M, Christopher Q, Jeroen R, Alexander S, Ashley S, Rick S (2010) Meeting report: the terabase metagenomics workshop and the vision of an Earth Microbiome Project Stand Genomic Sci 3:243–248. doi:10.4056/sigs.1433550
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data Nat Methods 7:335–336
McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2011) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea ISME J 6:610–618. doi:10.1038/ismej.2011.139
Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment Bioinformatics 26:266–267. doi:10.1093/bioinformatics/btp636
Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy Appl Environ Microbiol 73:5261–5267. doi:10.1128/aem.00062-07
Mackie RI, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract Am J Clin Nutr 69:1035S–1045S
Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome Nat Rev Microbiol 9:279–290. doi:10.1038/nrmicro2540
Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities Appl Environ Microbiol 71:8228–8235. doi:10.1128/aem.71.12.8228-8235.2005
Knights D, Costello E, Knight R (2011) Supervised classification of human microbiota FEMS Microbiol Rev 35:343–359. doi:10.1111/j.1574-6976.2010.00251.x
Breiman L (2001) Random forests Mach Learn 45:5–32. doi:10.1023/a:1010933404324
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: community ecology package. R package version 20-10
Soderholm JD, Perdue MH (2001) Stress and intestinal barrier function Am J Phys 280:G7–G13
O'Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho A-M, Quigley EMM, Cryan JF, Dinan TG (2009) Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses Biol Psychiatry 65:263–267
Anderson K, Russell J, Moreau C, Kautz S, Sullam K, Hu Y, Basinger U, Mott B, Buck N, Wheeler D (2012) Highly similar microbial communities are shared among related and trophically similar ant species Mol Ecol 21:2282–2296. doi:10.1111/j.1365-294X.2011.05464.x
Nelson T, Rogers T, Carlini A, Brown M (2013) Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals Environ Microbiol 15:1132–1145. doi:10.1111/1462-2920.12022
Kohl KD, Skopec MM, Dearing MD (2014) Captivity results in disparate loss of gut microbial diversity in closely related hosts Conserv Physiol 2:cou009. doi:10.1093/conphys/cou009
Sullam K, Essinger S, Lozupone C, O'Connor M, Rosen G, Knight R, Kilham S, Russell J (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis Mol Ecol 21:3363–3378. doi:10.1111/j.1365-294X.2012.05552.x
Colman D, Toolson E, Takacs-Vesbach C (2012) Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol 21:5124–5137. doi:10.1111/j.1365-294X.2012.05752.x
Xiang Z-F, Liang W-B, Nie S-G, Li M (2012) Diet and feeding behavior of Rhinopithecus brelichi at Yangaoping, Guizhou Am J Primatol 74:551–560
Bleisch WV, Jiahua X (1998) Ecology and behavior of the Guizhou snub-nosed langur (Rhinopithecus [Rhinopithecus] brelichi), with a discussion of socioecology in the genus. In: Jablonski NG (ed) The natural history of the doucs and snub-nosed monkeys. World Scientific Publishing, Singapore,
Guo S, Li B, Watanabe K (2007) Diet and activity budget of Rhinopithecus roxellana in the Qinling Mountains, China Primates 48:268–276. doi:10.1007/s10329-007-0048-z
Ding W, Zhao Q-K (2004) Rhinopithecus bieti at Tacheng, Yunnan: diet and daytime activities Int J Primatol 25:583–598. doi:10.1023/B:IJOP.0000023576.60883.e5
Bennett EL, Davies AG (1994) The ecology of Asian colobines. In: Davies AG, Oates J (eds) Colobine monkeys: their ecology, behavior, and evolution. Cambridge University Press, Cambridge,
Oates J (1994) The natural history of African colobines. Cambridge University Press, Cambridge,
Yeager CP, Kool K (2000) The behavioral ecology of Asian colobines. Cambridge University Press, Cambridge,
Rawson BM (2006) Activity budgets in black-shanked douc langurs (Pygathrix nigripes) Int J Primatol 27(Suppl 1) Abstract 307
Duc HM, Baxter GS, Page MJ (2009) Diet of Pygathrix nigripes in southern Vietnam Int J Primatol 30:15–28. doi:10.1007/s10764-008-9325-y
Lippold LK (1998) Natural history of douc langurs. In: Jablonski NG (ed) The natural history of the doucs and snub-nosed monkeys. World Scientific Publishing, Singapore,
Tinh NT, Long HT, Tuan BV, Vy TH, NA T (2012) The feeding behaviour and phytochemical food content of grey-shanked douc langurs (Pygathrix cinerea) at Kon Ka Kinh National Park, Vietnam Vietnamese J Primatol 2:25–35
Matsuda I, Tuuga A, Higashi S (2009) The feeding ecology and activity budget of proboscis monkeys Am J Primatol 71:478–492. doi:10.1002/ajp.20677
Raven PH, Evert RF, Eichhorn SE (2005) Biology of plants. W.H. Freeman & Company, New York,
McKey D (1974) Adaptive patterns in alkaloid physiology Am Nat 108:305–320
Hladik CM (1978) Adaptive strategies of primates in relation to leaf eating. Smithsonian Institution Press, Washington,
Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL (2016) Diet-induced extinction in the gut microbiota compounds over generations Nature 529:212–215. doi:10.1038/nature16504
Matsuda I, Sha JCM, Ortmann S, Schwarm A, Grandl F, Caton J, Jens W, Kreuzer M, Marlena D, Hagen KB, Clauss M (2015) Excretion patterns of solute and different-sized particle passage markers in foregut-fermenting proboscis monkey (Nasalis larvatus) do not indicate an adaptation for rumination Physiol Behav 149:45–52. doi:10.1016/j.physbeh.2015.05.020
Matsuda I, Tuuga A, Hashimoto C, Bernard H, Yamagiwa J, Fritz J, Tsubokawa K, Yayota M, Murai T, Iwata Y, Clauss M (2014) Faecal particle size in free-ranging primates supports a ‘rumination’ strategy in the proboscis monkey (Nasalis larvatus) Oecologia 174:1127–1137. doi:10.1007/s00442-013-2863-9
Russell JB, Rychlik JL (2001) Factors that alter rumen microbial ecology Science 292:1119–1122. doi:10.1126/science.1058830
Ley RE, Turnbaugh P, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity Nature 444:1022–1023. doi:10.1038/4441022a
Willing B, Voros A, Roos S, Jones C, Jansson A, Lindberg JE (2009) Changes in faecal bacteria associated with concentrate and forage-only diets fed to horses in training Equine Vet J 41:908914. doi:10.2746/042516409x447806
Mackie R, Aminov R, Hu W, Klieve A, Ouwerkerk D, Sundset M, Kamagata Y (2003) Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches Appl Environ Microbiol 69:6808–6815
Clarke R (1979) Niche in pasture-fed ruminants for the large rumen bacteria Oscillospira, Lampropedia, and Quin's and Eadie's ovals Appl Environ Microbiol 37:654–657
Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, Wilson BA, Nelson KE, White BA, Garber PA (2015) The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra) Microb Ecol 69:434–443. doi:10.1007/s00248-014-0554-7
Biddle A, Stewart L, Blanchard J, Leschine S (2013) Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities Diversity 5:627–640. doi:10.3390/d5030627
Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, Flint HJ (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut Appl Environ Microbiol 66:1654–1661. doi:10.1128/aem.66.4.1654-1661.2000
Velazquez OC, Lederer HM, Rombeau JL (1997) Butyrate and the colonocyte: production, absorption, metabolism, and therapeutic implications. In: Kritchevsky D, Bonfield C (eds) Dietary fiber in health and disease. Plenum Press Div Plenum Publishing Corp, New York, pp. 123–134
Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon Cell Metab 13:517–526. doi:10.1016/j.cmet.2011.02.018
Brahe LK, Astrup A, Larsen LH (2013) Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes Rev 14:950–959. doi:10.1111/obr.12068
Hong J, Jia Y, Pan S, Jia L, Li H, Han Z, Cai D, Zhao R (2016) Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice Oncotarget 7:56071–56082. doi:10.18632/oncotarget.11267
Frank D, St Amand A, Feldman R, Boedeker E, Harpaz N, Pace N (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases Proc Natl Acad Sci U S A 104:13780–13785. doi:10.1073/pnas.0706625104
Fujimoto T, Imaeda H, Takahashi K, Kasumi E, Bamba S, Fujiyama Y, Andoh A (2013) Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn's disease J Gastroenterol Hepatol 28:613–619. doi:10.1111/jgh.12073
Stewart C-B, Disotell TR (1998) Primate evolution—in and out of Africa Curr Biol 8:R582–R588. doi:10.1016/S0960-9822(07)00367-3
Russell J, Moreau C, Goldman-Huertas B, Fujiwara M, Lohman D, Pierce NE (2009) Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants Proc Natl Acad Sci U S A 106:21236–21241. doi:10.1073/pnas.0907926106
Acknowledgements
We would like to thank Richard D. Howard for his support of this project, thoughtful suggestions on analysis, and review of this manuscript. Krista Nichols kindly provided laboratory space for the molecular work. We also thank Bong Suk-Kim and Gaenna Rogers for their assistance in the laboratory. Finally, we thank the reviewers for the time and thought they put into providing helpful feedback on this manuscript. This project was funded by the Margot Marsh Biodiversity Foundation (VLH, CLT), San Diego Zoo Global, the Offield Family Foundation, the Earth Microbiome Project, the Howard Hughes Medical Institute (RK), Purdue College of Veterinary Medicine International Programs (VLH), and Fanjingshan National Nature Reserve. VLH was supported by a Purdue University Andrews Fellowship and a Purdue Research Foundation Research Grant.
Author information
Authors and Affiliations
Corresponding author
Additional information
An erratum to this article is available at https://doi.org/10.1007/s00248-017-1070-3.
Rights and permissions
About this article
Cite this article
Hale, V.L., Tan, C.L., Niu, K. et al. Diet Versus Phylogeny: a Comparison of Gut Microbiota in Captive Colobine Monkey Species. Microb Ecol 75, 515–527 (2018). https://doi.org/10.1007/s00248-017-1041-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00248-017-1041-8
Keywords
- Colobine
- Gut microbiota
- Diet
- Phylogeny
- Primate