Population-Specific Responses to Interspecific Competition in the Gut Microbiota of Two Atlantic Salmon (Salmo salar) Populations


The gut microbial community in vertebrates plays a role in nutrient digestion and absorption, development of intestine and immune systems, resistance to infection, regulation of bone mass and even host behavior and can thus impact host fitness. Atlantic salmon (Salmo salar) reintroduction efforts into Lake Ontario, Canada, have been unsuccessful, likely due to competition with non-native salmonids. In this study, we explored interspecific competition effects on the gut microbiota of two Atlantic salmon populations (LaHave and Sebago) resulting from four non-native salmonids. After 10 months of rearing in semi-natural stream tanks under six interspecific competition treatments, we characterized the gut microbiota of 178 Atlantic salmon by parallel sequencing the 16S rRNA gene. We found 3978 bacterial OTUs across all samples. Microbiota alpha diversity and abundance of 27 OTUs significantly differed between the two populations. Interspecific competition reduced relative abundance of potential beneficial bacteria (six genera of lactic acid bacteria) as well as 13 OTUs, but only in the LaHave population, indicating population-specific competition effects. The pattern of gut microbiota response to interspecific competition may reflect local adaptation of the host-microbiota interactions and can be used to select candidate populations for improved species reintroduction success.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ EMBO Rep 7:688–693. doi:10.1038/sj.embor.7400731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. 2.

    Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology Nat Rev Microbiol 11:227–238. doi:10.1038/nrmicro2974

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Cummings JH, Macfarlane GT (1997) Role of intestinal bacteria in nutrient metabolism Clin Nutr. 16:3–11. doi:10.1016/S0261-5614(97)80252-X

    Article  Google Scholar 

  4. 4.

    LeBlanc JG, Milani C, de Giori GS, et al. (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective Curr Opin Biotechnol. 24:160–168. doi:10.1016/j.copbio.2012.08.005

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system Cell 122:107–118. doi:10.1016/j.cell.2005.05.007

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Olszak T, An D, Zeissig S, et al. (2012) Microbial exposure during early life has persistent effects on natural killer T cell function Science 336:489–493. doi:10.1126/science.1219328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Kamada N, Chen GY, Inohara N, Núñez G (2013) Control of pathogens and pathobionts by the gut microbiota Nat Immunol 14:685–690. doi:10.1038/ni.2608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. 8.

    Sharon G, Segal D, Ringo JM, et al. (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster Proc Natl Acad Sci 107:20051–20056. doi:10.1073/pnas.1009906107

    Article  PubMed  Google Scholar 

  9. 9.

    Sjögren K, Engdahl C, Henning P, et al. (2012) The gut microbiota regulates bone mass in mice J Bone Miner Res 27:1357–1367. doi:10.1002/jbmr.1588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. 10.

    Roeselers G, Mittge EK, Stephens WZ, et al. (2011) Evidence for a core gut microbiota in the zebrafish ISME J 5:1595–1608. doi:10.1038/ismej.2011.38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. 11.

    Sullam KE, Essinger SD, Lozupone CA, et al. (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis Mol Ecol 21:3363–3378. doi:10.1111/j.1365-294X.2012.05552.x

    Article  PubMed  Google Scholar 

  12. 12.

    Hagi T, Tanaka D, Iwamura Y, Hoshino T (2004) Diversity and seasonal changes in lactic acid bacteria in the intestinal tract of cultured freshwater fish Aquaculture 234:335–346. doi:10.1016/j.aquaculture.2004.01.018

    Article  CAS  Google Scholar 

  13. 13.

    Neuman C, Hatje E, Zarkasi KZ, et al. (2016) The effect of diet and environmental temperature on the faecal microbiota of farmed Tasmanian Atlantic salmon (Salmo salar L.) Aquac Res 47:660–672. doi:10.1111/are.12522

    Article  CAS  Google Scholar 

  14. 14.

    Wong S, Rawls JF (2012) Intestinal microbiota composition in fishes is influenced by host ecology and environment Mol Ecol 21:3100–3102

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Schmidt VT, Smith KF, Melvin DW, Amaral-Zettler LA (2015) Community assembly of a euryhaline fish microbiome during salinity acclimation Mol Ecol 24:2537–2550. doi:10.1111/mec.13177

    Article  PubMed  Google Scholar 

  16. 16.

    Dehler CE, Secombes CJ, Martin SAM (2017) Environmental and physiological factors shape the gut microbiota of Atlantic salmon parr (Salmo salar L.) Aquac Amst Neth 467:149–157. doi:10.1016/j.aquaculture.2016.07.017

    Article  CAS  Google Scholar 

  17. 17.

    Davis DJ, Bryda EC, Gillespie CH, Ericsson AC (2016) Microbial modulation of behavior and stress responses in zebrafish larvae Behav Brain Res 311:219–227. doi:10.1016/j.bbr.2016.05.040

    Article  PubMed  Google Scholar 

  18. 18.

    Zarkasi KZ, Taylor RS, Abell GCJ, et al. (2016) Atlantic Salmon (Salmo salar L.) gastrointestinal microbial community dynamics in relation to Digesta properties and diet Microb Ecol 71:589–603. doi:10.1007/s00248-015-0728-y

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Givens CE, Ransom B, Bano N, Hollibaugh JT (2015) Comparison of the gut microbiomes of 12 bony fish and 3 shark species Mar Ecol Prog Ser 518:209–223. doi:10.3354/meps11034

    Article  Google Scholar 

  20. 20.

    Green TJ, Smullen R, Barnes AC (2013) Dietary soybean protein concentrate-induced intestinal disorder in marine farmed Atlantic salmon, Salmo salar is associated with alterations in gut microbiota Vet Microbiol 166:286–292. doi:10.1016/j.vetmic.2013.05.009

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Navarrete P, Fuentes P, De la Fuente L, et al. (2013) Short-term effects of dietary soybean meal and lactic acid bacteria on the intestinal morphology and microbiota of Atlantic salmon (Salmo salar) Aquac Nutr 19:827–836. doi:10.1111/anu.12047

    Article  CAS  Google Scholar 

  22. 22.

    Reveco FE, Øverland M, Romarheim OH, Mydland LT (2014) Intestinal bacterial community structure differs between healthy and inflamed intestines in Atlantic salmon (Salmo salar L.) Aquaculture 420–421:262–269. doi:10.1016/j.aquaculture.2013.11.007

    Article  CAS  Google Scholar 

  23. 23.

    Hartviksen M, JLG V, Ringø E, et al. (2014) Alternative dietary protein sources for Atlantic salmon (Salmo salar L.) effect on intestinal microbiota, intestinal and liver histology and growth Aquac Nutr 20:381–398. doi:10.1111/anu.12087

    Article  CAS  Google Scholar 

  24. 24.

    Wong S, Waldrop T, Summerfelt S, et al. (2013) Aquacultured rainbow trout (Oncorhynchus mykiss) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density Appl Environ Microbiol 79:4974–4984. doi:10.1128/AEM.00924-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Gajardo K, Jaramillo-Torres A, Kortner TM, et al. (2017) Alternative protein sources in the diet modulate microbiota and functionality in the distal intestine of Atlantic salmon (Salmo salar) Appl Environ Microbiol. doi:10.1128/AEM.02615-16

  26. 26.

    Ley RE, Lozupone CA, Hamady M, et al. (2008) Worlds within worlds: evolution of the vertebrate gut microbiota Nat Rev Microbiol 6:776–788. doi:10.1038/nrmicro1978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. 27.

    Linnenbrink M, Wang J, Hardouin EA, et al. (2013) The role of biogeography in shaping diversity of the intestinal microbiota in house mice Mol Ecol 22:1904–1916. doi:10.1111/mec.12206

    Article  PubMed  Google Scholar 

  28. 28.

    Kreisinger J, Čížková D, Vohánka J, Piálek J (2014) Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using high-throughput parallel pyrosequencing Mol Ecol 23:5048–5060. doi:10.1111/mec.12909

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Stevenson TJ, Buck CL, Duddleston KN (2014) Temporal dynamics of the cecal gut microbiota of juvenile arctic ground squirrels: a strong litter effect across the first active season Appl Environ. Microbiol 80:4260–4268. doi:10.1128/AEM.00737-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    Zarkasi KZ, Abell GCJ, Taylor RS, et al. (2014) Pyrosequencing-based characterization of gastrointestinal bacteria of Atlantic salmon (Salmo salar L.) within a commercial mariculture system J Appl Microbiol 117:18–27. doi:10.1111/jam.12514

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Llewellyn MS, McGinnity P, Dionne M, et al. (2016) The biogeography of the atlantic salmon (Salmo salar) gut microbiome ISME J 10:1280–1284. doi:10.1038/ismej.2015.189

    Article  PubMed  Google Scholar 

  32. 32.

    DeKoning ABL, Picard DJ, Bond SR, Schulte PM (2004) Stress and interpopulation variation in glycolytic enzyme activity and expression in a teleost fish Fundulus heteroclitus Physiol Biochem Zool 77:18–26. doi:10.1086/378914

    Article  CAS  Google Scholar 

  33. 33.

    Fangue NA, Hofmeister M, Schulte PM (2006) Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus J Exp Biol 209:2859–2872. doi:10.1242/jeb.02260

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Whitehead A, Triant DA, Champlin D, Nacci D (2010) Comparative transcriptomics implicates mechanisms of evolved pollution tolerance in a killifish population Mol Ecol 19:5186–5203. doi:10.1111/j.1365-294X.2010.04829.x

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Côte J, Roussel JM, Le Cam S, et al. (2012) Population differences in response to hypoxic stress in Atlantic salmon J Evol Biol 25:2596–2606. doi:10.1111/jeb.12007

    Article  PubMed  Google Scholar 

  36. 36.

    Crawford SS (2001) Salmonine introductions to the Laurentian Great Lakes: an historical review and evaluation of ecological effects. Canadian special publication of fisheries and aquatic sciences 132. NRC Press, Ottawa

    Google Scholar 

  37. 37.

    Stewart TJ, Schaner T (2002) Lake Ontario salmonid introductions 1970 to 1999: stocking, fishery and fish community influences. In: Lake Ontario fish communities and fisheries: 2001 annual report of the Lake Ontario management unit. Queen’s Printer for Ontario: Picton

  38. 38.

    Scott RJ, Noakes DLG, Beamish FWH, Carl LM (2003) Chinook salmon impede Atlantic salmon conservation in Lake Ontario Ecol Freshw Fish 12:66–73. doi:10.1034/j.1600-0633.2003.00002.x

    Article  Google Scholar 

  39. 39.

    Scott RJ, Poos MS, Noakes DLG, Beamish FWH (2005) Effects of exotic salmonids on juvenile Atlantic salmon behaviour Ecol Freshw Fish 14:283–288. doi:10.1111/j.1600-0633.2005.00099.x

    Article  Google Scholar 

  40. 40.

    Van Zwol JA, Neff BD, Wilson CC (2012) The effect of competition among three salmonids on dominance and growth during the juvenile life stage Ecol Freshw Fish 21:533–540. doi:10.1111/j.1600-0633.2012.00573.x

    Article  Google Scholar 

  41. 41.

    Houde ALS, Wilson CC, Neff BD (2015) Effects of competition with four nonnative salmonid species on Atlantic salmon from three populations Trans Am Fish Soc 144:1081–1090. doi:10.1080/00028487.2015.1064477

    Article  Google Scholar 

  42. 42.

    Houde ALS, Wilson CC, Neff BD (2015) Competitive interactions among multiple non-native salmonids and two populations of Atlantic salmon Ecol Freshw Fish 24:44–55. doi:10.1111/eff.12123

    Article  Google Scholar 

  43. 43.

    Houde ALS, Smith AD, Wilson CC, et al. (2016) Competitive effects between rainbow trout and Atlantic salmon in natural and artificial streams Ecol Freshw Fish 25:248–260. doi:10.1111/eff.12206

    Article  Google Scholar 

  44. 44.

    Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems Ann Gastroenterol 28:203–209

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Hartman GF (1965) The role of behavior in the ecology and interaction of underyearling coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo Gairdneri) J Fish Res Board Can 22:1035–1081. doi:10.1139/f65-095

    Article  Google Scholar 

  46. 46.

    Morantz DL, Sweeney RK, Shirvell CS, Longard DA (1987) Selection of microhabitat in summer by juvenile Atlantic salmon (Salmo salar) Can J Fish Aquat Sci 44:120–129. doi:10.1139/f87-015

    Article  Google Scholar 

  47. 47.

    Holecek DE, Cromwell KJ, Kennedy BP (2009) Juvenile Chinook salmon summer microhabitat availability, use, and selection in a central Idaho wilderness stream Trans Am Fish Soc 138:633–644. doi:10.1577/T08-062.1

    Article  Google Scholar 

  48. 48.

    Neave MJ, Streten-Joyce C, Glasby CJ, et al. (2012) The bacterial community associated with the marine polychaete Ophelina sp.1 (Annelida: Opheliidae) is altered by copper and zinc contamination in sediments Microb Ecol 63:639–650. doi:10.1007/s00248-011-9966-9

    Article  PubMed  Google Scholar 

  49. 49.

    Sogin ML, Morrison HG, Huber JA, et al. (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere” Proc Natl Acad Sci 103:12115–12120. doi:10.1073/pnas.0605127103

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Roesch LFW, Fulthorpe RR, Riva A, et al. (2007) Pyrosequencing enumerates and contrasts soil microbial diversity ISME J 1:283–290. doi:10.1038/ismej.2007.53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. 51.

    Caporaso JG, Kuczynski J, Stombaugh J, et al. (2010) QIIME allows analysis of high-throughput community sequencing data Nat Methods 7:335–336. doi:10.1038/nmeth.f.303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. 52.

    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST Bioinformatics 26:2460–2461. doi:10.1093/bioinformatics/btq461

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM.00062-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. 54.

    Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities Appl Environ Microbiol 71:8228–8235. doi:10.1128/AEM.71.12.8228-8235.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. 55.

    Oksanen J, Blanchet FG, Kindt R, et al (2015) Vegan: community ecology package. R package version 2.3–1. https://CRAN.R-project.org/package=vegan

  56. 56.

    Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles Bioinformatics 30:3123–3124. doi:10.1093/bioinformatics/btu494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. 57.

    Merrifield DL, Dimitroglou A, Foey A, et al. (2010) The current status and future focus of probiotic and prebiotic applications for salmonids Aquaculture 302:1–18. doi:10.1016/j.aquaculture.2010.02.007

    Article  Google Scholar 

  58. 58.

    Merrifield DL, Carnevali O (2014) Probiotic modulation of the gut microbiota of fish. In: Merrifield D, Ringø E (eds) Aquac. Nutr. Wiley, Chichester, pp. 185–222

    Google Scholar 

  59. 59.

    Bøgwald J, Dalmo RA (2014) Gastrointestinal pathogenesis in aquatic animals. In: Merrifield D, Ringø E (eds) Aquac. Nutr. Wiley, Chichester, pp. 53–74

    Google Scholar 

  60. 60.

    Miller KM, Teffer A, Tucker S, et al. (2014) Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines Evol Appl 7:812–855. doi:10.1111/eva.12164

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Smith CCR, Snowberg LK, Gregory Caporaso J, et al. (2015) Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota ISME J 9:2515–2526. doi:10.1038/ismej.2015.64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. 62.

    Bailey MT, Dowd SE, Parry NMA, et al. (2010) Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium Infect Immun 78:1509–1519. doi:10.1128/IAI.00862-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. 63.

    Bailey MT, Dowd SE, Galley JD, et al. (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation Brain Behav Immun 25:397–407. doi:10.1016/j.bbi.2010.10.023

    Article  PubMed  CAS  Google Scholar 

  64. 64.

    Goodrich JK, Waters JL, Poole AC, et al. (2014) Human genetics shape the gut microbiome Cell 159:789–799. doi:10.1016/j.cell.2014.09.053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. 65.

    Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids Integr Comp Biol 42:517–525. doi:10.1093/icb/42.3.517

    Article  PubMed  CAS  Google Scholar 

  66. 66.

    Ringø E, Løvmo L, Kristiansen M, et al. (2010) Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: a review Aquac Res 41:451–467. doi:10.1111/j.1365-2109.2009.02339.x

    Article  Google Scholar 

  67. 67.

    Perdigón G, Fuller R, Raya R (2001) Lactic acid bacteria and their effect on the immune system Curr Issues Intest Microbiol 2:27–42

    PubMed  Google Scholar 

  68. 68.

    Ringø E (2008) The ability of carnobacteria isolated from fish intestine to inhibit growth of fish pathogenic bacteria: a screening study Aquac Res 39:171–180. doi:10.1111/j.1365-2109.2007.01876.x

    Article  CAS  Google Scholar 

  69. 69.

    Bailey MT, Lubach GR, Coe CL (2004) Prenatal stress alters bacterial colonization of the gut in infant monkeys J Pediatr Gastroenterol Nutr 38:414–421

    Article  PubMed  Google Scholar 

  70. 70.

    Knowles SR, Nelson EA, Palombo EA (2008) Investigating the role of perceived stress on bacterial flora activity and salivary cortisol secretion: a possible mechanism underlying susceptibility to illness Biol Psychol 77:132–137. doi:10.1016/j.biopsycho.2007.09.010

    Article  PubMed  Google Scholar 

Download references


This project was funded by the Natural Sciences and Engineering Council of Canada (Discovery Grants and Strategic Project Grant). We thank A.L. Houde, C. Wilson, W. Sloan, S. Ferguson, B. Lewis, A. Smith, C. Black, H. Dokter, J. Van Zwol, S. Garner, T. Hain, M.C. Bellmare, M.H. Greffard, H. Allegue, K. Gradil, M. Lau, Z. Yang, M. Browning, I. MacKenzie, and J. Laycock for their support and assistance in semi-natural stream construction, fish breeding, fish feeding, sample collection, and other help at the Ontario Ministry of Natural Resources (OMNR) Codrington Research Facility. We thank R. Hepburn for assistance in sequencing the bacterial 16S rRNA gene library.

Author information




XH conducted field and lab work, performed data analyses, and wrote the first draft of the paper. SRC provided the 16S rRNA gene primers and helped with the interpretation of the microbial community data. DDH supervised this study. All authors contributed to the final version of this paper.

Corresponding author

Correspondence to Daniel D. Heath.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, X., Chaganti, S.R. & Heath, D.D. Population-Specific Responses to Interspecific Competition in the Gut Microbiota of Two Atlantic Salmon (Salmo salar) Populations. Microb Ecol 75, 140–151 (2018). https://doi.org/10.1007/s00248-017-1035-6

Download citation


  • 16S rRNA
  • Gut microbiota
  • Interspecific competition
  • Non-native species
  • Reintroduction
  • Salmonid