Microbial Composition and Diversity Patterns in Deep Hyperthermal Aquifers from the Western Plain of Romania

  • Cecilia M. Chiriac
  • Andreea Baricz
  • Edina Szekeres
  • Knut Rudi
  • Nicolae Dragoș
  • Cristian Coman
Microbiology of Aquatic Systems

Abstract

A limited number of studies have investigated the biodiversity in deep continental hyperthermal aquifers and its influencing factors. Here, we present the first description of microbial communities inhabiting the Pannonian and Triassic hyperthermal aquifers from the Western Plain of Romania, the first one being considered a deposit of “fossilized waters,” while the latter is embedded in the hydrological cycle due to natural refilling. The 11 investigated drillings have an open interval between 952 and 3432 m below the surface, with collected water temperatures ranging between 47 and 104 °C, these being the first microbial communities characterized in deep continental water deposits with outflow temperatures exceeding 80 °C. The abundances of bacterial 16S rRNA genes varied from approximately 105–106 mL−1 in the Pannonian to about 102–104 mL−1 in the Triassic aquifer. A 16S rRNA gene metabarcoding analysis revealed distinct microbial communities in the two water deposits, especially in the rare taxa composition. The Pannonian aquifer was dominated by the bacterial genera Hydrogenophilus and Thermodesulfobacterium, together with archaeal methanogens from the Methanosaeta and Methanothermobacter groups. Firmicutes was prevalent in the Triassic deposit with a large number of OTUs affiliated to Thermoanaerobacteriaceae, Thermacetogenium, and Desulfotomaculum. Species richness, evenness, and phylogenetic diversity increased alongside with the abundance of mesophiles, their presence in the Triassic aquifer being most probably caused by the refilling with large quantities of meteoric water in the Carpathian Mountains. Altogether, our results show that the particular physico-cheminal characteristics of each aquifer, together with the water refilling possibilities, seem to determine the microbial community structure.

Keywords

Deep biosphere Continental aquifer Microbial composition Hyperthermal water 16S rRNA gene Diversity patterns 

Supplementary material

248_2017_1031_MOESM1_ESM.doc (15 kb)
ESM 1(DOC 15 kb)

References

  1. 1.
    Nyyssönen M, Bomberg M, Kapanen A, Nousiainen A, Pitkänen P, Itävaara M (2012) Methanogenic and sulphate-reducing microbial communities in deep groundwater of crystalline rock fractures in Olkiluoto, Finland Geomicrobiol J. 29:863–878. doi:10.1080/014904512011635759 CrossRefGoogle Scholar
  2. 2.
    Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, et al. (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean margin Proc Nat Acad Sci USA 103:2815–2820CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ragon M, Van-Driessche AES, García-Ruíz JM, Moreira D, Lopez-Garcia P (2013) Microbial diversity in the deep-subsurface hydrothermal aquifer feeding the giant gypsum crystal-bearing Naica Mine, Mexico Front. Microbiol. 4:37. doi:10.3389/fmicb201300037 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Walsh EA, Birkpatrick JB, Rutherford SD, Smith DC, Sogin M, Hondt S (2016) Bacterial diversity and community composition from seasurface to subseafloor ISME J 10:979–989CrossRefPubMedGoogle Scholar
  5. 5.
    Marteinsson VT, Hauksdóttir S, Hobel CFV, Kristmannsdóttir H, Hreggvidsson GO, Kristjánsson JK (2001) Phylogenetic diversity analysis of subterranean hot springs in Iceland Appl. Environ. Microbiol. 67:4242–4248CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Summit M, Baross JA (2001) A novel microbial habitat in the mid-ocean ridge subseafloor Proc. Natl. Acad. Sci. U. S. A. 98:2158–2163CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kimura H, Asada R, Masta A, Naganuma T (2003) Distribution of microorganisms in the subsurface of the Manus Basin hydrothermal vent field in Papua New Guinea Appl. Environ. Microbiol. 69:644–648. doi:10.1128/AEM691644-6482003 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hubalek V, Wu X, Eiler A, Buck M, Heim C, Dopson M, et al. (2016) Connectivity to the surface determines diversity patterns in subsurface aquifers of the Fennoscandian shield ISME J 10:2556. doi:10.1038/ismej201636 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sahl JW, Schmidt R, Swanner ED, Mandernack KW, Templeton AS, Kieft TL, et al. (2008) Subsurface microbial diversity in deep-granitic-fracture water in Colorado Appl. Environ. Microbiol. 74:143–152. doi:10.1128/AEM01133-07 CrossRefPubMedGoogle Scholar
  10. 10.
    Kimura H, Sugihara M, Yamamoto H, Patel BK, Kato K, Hanada S (2005) Microbial community in a geothermal aquifer associated with the subsurface of the Great Artesian Basin, Australia Extremophiles 9: 407–414. doi:10.1007/s00792–005–0454-3
  11. 11.
    Kieft TL (2016) Microbiology of the Deep Continental Biosphere in Hurst CJ (ed) Their world: A diversity of microbial environments, Springer, Cham pp 225–249Google Scholar
  12. 12.
    Nyyssönen M, Hultman J, Ahonen L, Kukkonen I, Paulin L, Laine P, et al. (2014) Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield ISME J 8:126–138. doi:10.1038/ismej2013125 CrossRefPubMedGoogle Scholar
  13. 13.
    Lau MC, Cameron C, Magnabosco C, Brown CT, Schilkey F, Grim, et al. (2014) Phylogeny and phylogeography of functional genes shared among seven terrestrial subsurface metagenomes reveal N-cycling and microbial evolutionary relationships Front Microbiol 5:531. doi:10.3389/fmicb201400531 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sogin ML, Morrison HG, Huber JA, Mark-Welch D, Huse SM, Neal PR, et al. (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere” Proc. Natl. Acad. Sci. U. S. A. 103:12115–12120CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Brazelton WJ, Nelson B, Schrenk MO (2012) Metagenomic evidence for H 2 oxidation and H 2 production by serpentinite-hosted subsurface microbial communities Front. Microbiol. 2:268. doi:10.3389/fmicb201100268 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chapelle FH, O’Neill K, Bradley PM, Methé BA, Ciufo SA, et al. (2002) A hydrogen-based subsurface microbial community dominated by methanogens Nature 415:312–315. doi:10.1038/415312a CrossRefPubMedGoogle Scholar
  17. 17.
    Lin LH, Wang PL, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, et al. (2006) Long term biosustainability in a high energy, low diversity crustal biotome Science 314:479CrossRefPubMedGoogle Scholar
  18. 18.
    Roussel EG, Bonavita MA, Querellou J, Cragg BA, Webster G, Prieur D, et al. (2008) Extending the sub-sea-floor biosphere Science 320:1046CrossRefPubMedGoogle Scholar
  19. 19.
    Hengsuwan M, Heim C, Simon K, Hansen BT (2015) Long-term investigation of Sr-isotope and rare earth element fractionation processes within three major aquifers in the Äspö hard rock laboratory (Sweden) Geomicrobial J 32:243–254CrossRefGoogle Scholar
  20. 20.
    Țenu A (1981) Zăcăminte de ape hipertermale din Nord-Vestul României. Editura Academiei Republicii Socialiste România, București, Google Scholar
  21. 21.
    Bendea C, Bendea G, Rosca M, Cucueteanu D (2013) Current status of geothermal energy production and utilization in Romania J Sustain Energy 4:1–9Google Scholar
  22. 22.
    Edwards KJ, Becker K, Colwell F (2012) The deep, dark energy biosphere: intraterrestrial life on Earth Annu. Rev. Earth Planet. Sci. 40:551–568CrossRefGoogle Scholar
  23. 23.
    Lovley DR, Chapelle FH (1995) Deep subsurface microbial precesses Rev. Geophys. 33:365–381CrossRefGoogle Scholar
  24. 24.
    Suenaga E, Nakamura H (2005) Evaluation of three methods for effective extraction of DNA from human hair J Chromatogr B Analyt Technol Biomed Life Sci 820:137–141. doi:10.1016/jjchromb200411028 CrossRefPubMedGoogle Scholar
  25. 25.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, Chichester, pp. 115–175Google Scholar
  26. 26.
    Suzuki M, Taylor L, DeLong E (2006) Quantitative analysis of small subunit rRNA genes in mixed microbial populations via 5′-nuclease assays Appl. Environ. Microbiol. 66:4605–4614CrossRefGoogle Scholar
  27. 27.
    Yu Y, Lee C, Kim J, Hwang S (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction Biotechnol. Bioeng. 89:670–679CrossRefPubMedGoogle Scholar
  28. 28.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool J. Mol. Biol. 215:403–410CrossRefPubMedGoogle Scholar
  29. 29.
    Benson DA, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2015) GenBank Nucleic Acids Res. 43:D30–D35. doi:10.1093/nar/gku1216 CrossRefPubMedGoogle Scholar
  30. 30.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. (2010) QIIME allows analysis of high-throughput community sequencing data Nat. Methods 7:335–336. doi:10.1038/nmethf303 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST Bioinformatics 26:2460–2461. doi:10.1093/bioinformatics/btq461 CrossRefPubMedGoogle Scholar
  32. 32.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie LE, Keller K, et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database and worlbench compatible with ARB Appl. Environ. Microbiol. 72(7):5069–5072CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    McDonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J, Wendel D, et al. (2012) The biological observation matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome GigaScience 1:–7. doi:10.1186/2047-217X-1-7
  34. 34.
    Lin X, Kennedy D, Fredrickson J, Bjornstad B, Konopka A (2012) Vertical stratification of subsurface microbial community composition across geological formations at the Hanford site: Hanford site subsurface microbial communities Environ. Microbiol. 14:414–425. doi:10.1111/j1462-2920201102659x CrossRefPubMedGoogle Scholar
  35. 35.
    Legendre P, Fortin MJ (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data Mol. Ecol. Resour. 10:831–844. doi:10.1111/j1755-0998201002866x CrossRefPubMedGoogle Scholar
  36. 36.
    Galtier N, Lobry JR (1997) Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes J. Mol. Evol. 44:632–636CrossRefPubMedGoogle Scholar
  37. 37.
    Kimura H, Ishibashi JI, Masuda H, Kato K, Hanada S (2007) Selective phylogenetic analysis (SePA) targeting 16S rRNA gene of hyperthermophilic archaea in the deep-subsurface hot biosphere Appl. Environ. Microbiol. 73:2110–2117. doi:10.1128/AEM02800-06 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Agarwala R, Barrett T, Beck J, Benson DA (2016) Database resources of the National Center for biotechnology information Nucleic Acids Res. 44:D7-19. doi:10.1093/nar/gkv1290 Google Scholar
  39. 39.
    Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences Nat. Biotechnol.:8, 1–10. doi:10.1038/nbt2676
  40. 40.
    Kovácz J, Balázs I, Jákfalvi S (2013) Studiul forajelor geotermale. Program de cercetare în Euroregiunea Hajdú-Bihar – Bihor pentru cunoaşterea stării hidrogeologice a corpurilor de apă termală transfrontaliere. Proiect finanţat prin programul de Cooperare Transfrontalieră Ungaria - România 2007–2013Google Scholar
  41. 41.
    Itävaara M, Nyyssönen M, Kapanen A, Nousiainen A, Ahonen L, Kukkonen I (2011) Characterization of bacterial diversity to a depth of 1500 m in the Outokumpu Deep Borehole, Fennoscandian shield: deep terrestrial biodiversity FEMS Microbiol. Ecol. 77:295–309. doi:10.1111/j1574-6941201101111x CrossRefPubMedGoogle Scholar
  42. 42.
    Purkamo L, Bomberg M, Kietäväinen R, Salavirta H, Nyyssönen M, Nuppunen-Puputti M, et al. (2016) Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids Biogeosciences 13:3091–3108. doi:10.5194/bg-13-3091-2016 CrossRefGoogle Scholar
  43. 43.
    Onstott TC, Lin LH, Davidson M, Mislowack B, Borcsik M, Hall J, et al. (2006) The origin and age of biogeochemical trends in deep fracture water of the Witwatersrand Basin, South Africa Geomicrobiol J. 23:369–414. doi:10.1080/01490450600875688 CrossRefGoogle Scholar
  44. 44.
    Moser DP, Onstott TC, Fredrickson JK, Brockman FJ, Balkwill DL, Drake GR, et al. (2003) Temporal shifts in the geochemistry and microbial community structure of an ultradeep mine borehole following isolation Geomicrobiol J. 20:517–548. doi:10.1080/713851170 CrossRefGoogle Scholar
  45. 45.
    Gihring TM, Moser DP, Lin LH, Davidson M, Onstott TC, Morgan L, et al. (2006) The distribution of microbial taxa in the subsurface water of the Kalahari shield, South Africa Geomicrobiol J. 23:415–430 doi:10.1080/01490450600875696CrossRefGoogle Scholar
  46. 46.
    Oren A (2014) The Family Methanobacteriaceae in Rosenberg E, DeLong EF, Lory S, et al (eds) The Prokaryotes, Springer, Berlin, Heidelberg pp 165–193Google Scholar
  47. 47.
    Oren A (2014) The Family Rhodocyclaceae. In: Rosenberg E, EF DL, Lory S, et al. (eds) The Prokaryotes. Springer, Berlin, pp. 975–998CrossRefGoogle Scholar
  48. 48.
    Hayashi NR, Ishida T, Yokota A, Kodama T, Igarashi Y (1999) Hydrogenophilus thermoluteolus gen nov, sp nov, a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium Int J Syst Evol Micr 49:783–786Google Scholar
  49. 49.
    Vesteinsdottir H, Reynisdottir DB, Orlygsson J (2011) Hydrogenophilus islandicus sp nov, a thermophilic hydrogen-oxidizing bacterium isolated from an Icelandic hot spring Intl J Syst Evol Micr 61:290–294. doi:10.1099/ijs0023572-0 CrossRefGoogle Scholar
  50. 50.
    Stöhr R, Waberski A, Liesack W, Völker H, Wehmeyer U, Thomm M (2001) Hydrogenophilus hirschii sp nov, a novel thermophilic hydrogen-oxidizing Beta-Proteobacterium isolated from Yellowstone national park Intl J Syst Evol Micr 51:481–488. doi:10.1099/00207713-51-2-481 CrossRefGoogle Scholar
  51. 51.
    Bhatnagar S, Badger JH, Madupu R, Khouri HM, O’Connor EM, Robb FT, et al. (2015) Genome sequence of a sulfate-reducing thermophilic bacterium, Thermodesulfobacterium commune DSM 2178T (phylum Thermodesulfobacteria) Genome Announc 3:e01490–e01414. doi:10.1128/genomeA01490-14 PubMedPubMedCentralGoogle Scholar
  52. 52.
    Pham VD, Hnatow LL, Zhang S, Fallon RD, Jackson SC, Tomb JF, et al. (2009) Characterizing microbial diversity in production water from an Alaskan mesothermic petroleum reservoir with two independent molecular methods Environ. Microbiol. 11:176–187. doi:10.1111/j1462-2920200801751x CrossRefPubMedGoogle Scholar
  53. 53.
    Dong Y, Kumar CG, Chia N, Kim PJ, Miller PA, Price ND, et al. (2014) Halomonas sulfidaeris - dominated microbial community inhabits a 18 km-deep subsurface Cambrian sandstone reservoir Environ. Microbiol. 16:1695–1708. doi:10.1111/1462–292012325 CrossRefPubMedGoogle Scholar
  54. 54.
    Davidson MM, Silver BJ, Onstott TC, Moser DP, Gihring TH, Pratt LM, et al. (2011) Capture of planktonic microbial diversity in fractures by long-term monitoring of flowing boreholes, Evander Basin, South Africa Geomicrobiol J. 28:275–300. doi:10.1080/014904512010499928 CrossRefGoogle Scholar
  55. 55.
    Aüllo T, Ranchou-Peyruse A, Ollivier B, Magot M (2013) Desulfotomaculum spp and related gram-positive sulfate-reducing bacteria in deep subsurface environments Front. Microbiol. 4:362. doi:10.3389/fmicb201300362 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Mladenovska Z, Mathrani IM (1995) Ahring, BK Isolation and characterization of Caldicellulosiruptor lactoaceticus sp nov, an extremely thermophilic, cellulolytic, anaerobic bacterium. Arch. Microbiol. 163: 223–230. doi:10.1007/BF00305357 CrossRefGoogle Scholar
  57. 57.
    Huang CY, Patel BK, Mah RA, Baresi L (1998) Caldicellulosiruptor owensensis sp nov, an anaerobic, extremely thermophilic, xylanolytic bacterium Intl J Syst Evol Micr 48:91–97Google Scholar
  58. 58.
    Miroshnichenko ML, Kublanov IV, Kostrikina NA, Tourova TP, Kolganova TV, Birkeland NK, et al. (2008) Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs Intl J Syst Evol Micr 58:1492–1496. doi:10.1099/ijs065236-0 CrossRefGoogle Scholar
  59. 59.
    Widdel F (2006) The Genus Desulfotomaculum. In: Dworkin M, Falkow S, Rosenberg E (eds) The Prokaryotes. Springer, New York, pp. 787–794CrossRefGoogle Scholar
  60. 60.
    Nazina TN, Ivanova AE, Kanchaveli LP, Rozanova EP (1989) A new sporeforming thermophilic methylotrophic sulfate-reducing bacterium, Desulfotomaculum kutznetsovii sp. nov Mikrobiologiya (Translated) 57:823–827Google Scholar
  61. 61.
    O’Sullivan LA, Roussel EG, Weightman AJ, Webster G, Hubert CRJ, Bell E (2015) Survival of Desulfotomaculum spores form estuarine sediments after serial autoclaving and hith-temperature exposure ISME J 9:922–933CrossRefPubMedGoogle Scholar
  62. 62.
    Zillig W, Holz I, Janekovic D, Schifer W, Reiter WD (1983) The archaebacterium Thermococcus celer represents, a novel genus within the thermophilic branch of the archaebacteria System Appl Microbiol 4:88–94CrossRefGoogle Scholar
  63. 63.
    Huber H, Huber R, Steter KO (2006) Thermoproteales. In: Dworkin M, Falkow S, Rosenberg E (eds) The Prokaryotes. Springer, New York, pp. 10–22CrossRefGoogle Scholar
  64. 64.
    Hartzell P, Reed DW (2006) The Genus Archaeoglobus. In: Dworkin M, Falkow S, Rosenberg E (eds) The Prokaryotes. Springer, New York, pp. 82–100CrossRefGoogle Scholar
  65. 65.
    Palleroni NJ, Bradbury JF (1993) Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al 1983 Intl J Syst Evol Micr 43:606–609. doi:10.1099/00207713–43–3-606 Google Scholar
  66. 66.
    Borsodi AK, Szirányi B, Krett G, Márialigeti K, Janurik E, Pekár F (2016) Changes in the water quality and bacterial community composition of an alkaline and saline oxbow lake used for temporary reservoir of geothermal waters Environ. Sci. Pollut. Res. 23:17676. doi:10.1007/s11356-016-6923-7 CrossRefGoogle Scholar
  67. 67.
    Cheng L, Shi S, Li Q, Chen J, Zhang H, Lu Y (2014) Progressive degradation of crude oil n-Alkanes coupled to methane production under mesophilic and thermophilic conditions PLoS ONE 9:e113253. doi:10.1371/journalpone0113253 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Fang HHP, Liang DW, Zhang T, Liu Y (2006) Anaerobic treatment of phenol in wastewater under thermophilic condition Water Res. 40:427–434. doi:10.1016/jwatres200511025 CrossRefPubMedGoogle Scholar
  69. 69.
    Lladser ME, Gouet R, Reeder J (2011) Extrapolation of Urn models via poissonization: accurate measurements of the microbial unknown PLoS One 6:e21105. doi:10.1371/journalpone0021105 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Inskeep WP, Rusch DB, Jay ZJ, Herrgard MJ, Kozubal MA, Richardson TH, et al. (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function PLoS One 5:e9773. doi:10.1371/journalpone0009773 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Sharp CE, Brady AL, Sharp GH, Grasby SE, Stott MB, Dunfield PF (2014) Humboldt’s spa: microbial diversity is controlled by temperature in geothermal environments ISME J 8:1166–1174CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Lau CY, Jing HM, Aitchison JC, Pointing SB (2006) Highly diverse community structure in a remote central Tibetan geothermal spring does not display monotonic variation to thermal stress FEMS Microbiol. Ecol. 57(1):80–91. doi:10.1111/j1574-6941200600104x CrossRefGoogle Scholar
  73. 73.
    Purcell D, Sompong U, Lau CY, Barraclough TG, Peerapornpisal Y, Pointing SB (2007) The effects of temperature, pH and sulphide on the community structure of Hyperthermophilic streamers in Hot Springs of northern Thailand FEMS Microbiol. Ecol. 60(3):456–466. doi:10.1111/j1574-6941200700302x CrossRefPubMedGoogle Scholar
  74. 74.
    Wang S, Weiguo H, Hailiang D, Hongchen J, Liuqin H, Geng W, Chuanlun Z, et al. (2013) Control of temperature on microbial community structure in Hot Springs of the Tibetan plateau PLoS One 8(5):e62901. doi:10.1371/journalpone0062901 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Meyer-Dombard DR, Amend JP (2014) Geochemistry and microbial ecology in alkaline hot springs of Ambitle Island, Papua New Guinea Extremophiles 18:763. doi:10.1007/s00792-014-0657-6 CrossRefPubMedGoogle Scholar
  76. 76.
    Headd B, Engel AS (2014) Biogeographic congruency among bacterial communities from terrestrial sulfidic springs Front. Microbiol. 5:473. doi:10.3389/fmicb201400473 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities Appl. Environ. Microbiol. 73:1576–1585. doi:10.1128/AEM01996-06 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Bomberg M, Lamminmäki T, Itävaara M (2016) Microbial communities and their predicted metabolic characteristics in deep fracture groundwaters of the crystalline bedrock of Olkiluoto, Finland Biogeosciences 13:6031–6047. doi:10.5194/bg-13-6031-2016 CrossRefGoogle Scholar
  79. 79.
    Kamagata Y, Kawasaki H, Oyaizu H, Nakamura K, Mikami E, Endo G, Koga Y, Yamasato K (1992) Characterization of three thermophilic strains of Methanothrix (“Methanosaeta”) thermophila sp nov and rejection of Methanothrix (“Methanosaeta”) thermoacetophila Int. J. Syst. Bacteriol. 42:463–468CrossRefPubMedGoogle Scholar
  80. 80.
    Wasserfallen A, Nölling J, Pfister P, Reeve J, Conway de Macario E (2000) Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov Intl J Syst Evol Mic 50:43–53CrossRefGoogle Scholar
  81. 81.
    Oremland RS, Polcin S (1982) Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments Appl. Environ. Microbiol. 44:1270–1276PubMedPubMedCentralGoogle Scholar
  82. 82.
    Berg IA (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways Appl. Environ. Microbiol. 77:1925–1936CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Campbell BJ, Cary C (2004) Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents Appl. Environ. Microbiol. 70:6282–6289. doi:10.1128/AEM70106282-62892014 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Magnabosco C, Ryan K, Lau MC, Kuloyo O, Lollar BS, Kieft TL, van Heerden E, Onstott TC (2016) A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust ISME J 10:730–741CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Cecilia M. Chiriac
    • 1
    • 2
  • Andreea Baricz
    • 1
    • 2
  • Edina Szekeres
    • 1
    • 2
  • Knut Rudi
    • 3
  • Nicolae Dragoș
    • 1
    • 2
  • Cristian Coman
    • 1
  1. 1.NIRDBS, Institute of Biological ResearchCluj-NapocaRomania
  2. 2.Molecular Biology and Biotechnology Department, Faculty of Biology and GeologyBabeş-Bolyai UniversityCluj-NapocaRomania
  3. 3.Chemistry, Biotechnology and Food Science DepartmentNorwegian University of Life SciencesAasNorway

Personalised recommendations