Skip to main content

Advertisement

Log in

Variation of Synechococcus Pigment Genetic Diversity Along Two Turbidity Gradients in the China Seas

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Synechococcus are important and widely distributed picocyanobacteria that encompass a high pigment diversity. In this study, we developed a primer set (peBF/peAR) for amplifying the cpeBA operon sequence from Synechococcus genomic DNA to study Synechococcus pigment diversity along two turbidity gradients in the China seas. Our data revealed that all previously reported pigment types occurred in the South (SCS) and East (ECS) China Seas. In addition, a novel pigment genetic type (type 3f), represented by the high phycourobilin Synechococcus sp. strain KORDI-100 (Exc495:545 = 2.35), was detected. This pigment genetic type differs from the 3c/3d types not only for a very high PUB/PEB ratio but also for a different intergenic spacer sequence and gene organization of the phycobilisome. Synechococcus of different pigment types exhibited clear niche differentiation. Type 2 dominated in the coastal waters, whereas type 3c/3d and 3f were predominant in oceanic waters of the SCS in summer. In the ECS, however, type 3a was the major pigment type throughout the transect. We suggest that in marine environment, various pigment types often co-occur but with one type dominant and PUB/PEB ratio is related to geographic distribution of Synechococcus pigment types. The two marginal seas of China have markedly different Synechococcus pigment compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, Karl DM, Li WK, Lomas MW, Veneziano D (2013) Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus PNAS 110(24):9824–9829

    Article  PubMed  CAS  Google Scholar 

  2. Six C, Thomas J-C, Garczarek L, Ostrowski M, Dufresne A, Blot N, Scanlan DJ, Partensky F (2007) Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study Genome Biol. 8(12):1

    Article  CAS  Google Scholar 

  3. Wood M, Horan P, Muirhead K, Phinney D, Yentsch C, Waterbury J (1985) Discrimination between types of pigments in marine Synechococcus spp. by scanning spectroscopy, epifluorescence microscopy, and flow cytometry Limnol. Oceanogr. 30(6):1303–1315

    Article  CAS  Google Scholar 

  4. Vörös L, Callieri C, Katalin V, Bertoni R (1998) Freshwater picocyanobacteria along a trophic gradient and light quality range. In: Phytoplankton and trophic gradients. Springer, Netherlands, pp 117–125

  5. Stomp M, Huisman J, Vörös L, Pick FR, Laamanen M, Haverkamp T, Stal LJ (2007) Colourful coexistence of red and green picocyanobacteria in lakes and seas Ecol. Lett. 10(4):290–298

    Article  PubMed  Google Scholar 

  6. Everroad C, Six C, Partensky F, Thomas J-C, Holtzendorff J, Wood AM (2006) Biochemical bases of type IV chromatic adaptation in marine Synechococcus spp J. Bacteriol. 188(9):3345–3356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Scanlan DJ (2012) Marine picocyanobacteria. In: Ecology of Cyanobacteria II. Springer, Berlin pp 503–533

  8. Callieri C, Cronberg G, Stockner JG (2012) Freshwater picocyanobacteria: single cells, microcolonies and colonial forms. In: Ecology of Cyanobacteria II. Springer, New York pp 229–269

  9. Stomp M, Huisman J, De Jongh F, Veraart AJ, Gerla D, Rijkeboer M, Ibelings BW, Wollenzien UI, Stal LJ (2004) Adaptive divergence in pigment composition promotes phytoplankton biodiversity Nature 432(7013):104–107

    Article  PubMed  CAS  Google Scholar 

  10. Callieri C (1996) Extinction coefficient of red, green and blue light and its influence on picocyanobacterial types in lakes at different trophic levels Memorie-Istituto Italiano Di Idrobiologia Dott Marco De Marchi 54:135–142

    Google Scholar 

  11. Pittera J, Humily F, Thorel M, Grulois D, Garczarek L, Six C (2014) Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus The ISME Journal 8(6):1221–1236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Moore LR, Goericke R, Chisholm SW (1995) Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties Mar. Ecol. Prog. Ser. 116:259–275

    Article  Google Scholar 

  13. Liu H, Jing H, Wong TH, Chen B (2014) Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong Environ. Microbiol. Rep. 6(1):90–99

    Article  PubMed  CAS  Google Scholar 

  14. Everroad C, Wood M (2006) Comparative molecular evolution of newly discovered picocyanobacterial strains reveals a phylogenetically informative variable region of β-phycoerythrin J. Phycol. 42(6):1300–1311

    Article  CAS  Google Scholar 

  15. Everroad C, Wood M (2012) Phycoerythrin evolution and diversification of spectral phenotype in marine Synechococcus and related picocyanobacteria Mol Phylogen Evol 64(3):381–392

    Article  CAS  Google Scholar 

  16. Humily F, Partensky F, Six C, Farrant GK, Ratin M, Marie D, Garczarek L (2013) A gene island with two possible configurations is involved in chromatic acclimation in marine Synechococcus PLoS One 8(12):e84459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Haverkamp T, Acinas SG, Doeleman M, Stomp M, Huisman J, Stal LJ (2008) Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons Environ. Microbiol. 10(1):174–188

    PubMed  CAS  Google Scholar 

  18. Xia X, Partensky F, Garczarek L, Suzuki K, Guo C, Cheung SY, Liu H (2016) Phylogeography and pigment type diversity of Synechococcus cyanobacteria in surface waters of the northwestern Pacific Ocean Environ. Microbiol. doi:10.1111/1462-2920.13541

  19. Larsson J, Celepli N, Ininbergs K, Dupont CL, Yooseph S, Bergman B, Ekman M (2014) Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea The ISME Journal 8(9):1892–1903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chung C-C, Huang C-Y, Gong G-C, Lin Y-C (2014) Influence of the Changjiang River flood on Synechococcus ecology in the surface waters of the East China Sea Microb. Ecol. 67(2):273–285

    Article  PubMed  Google Scholar 

  21. Xia X, Vidyarathna NK, Palenik B, Lee P, Liu H (2015) Comparison of the seasonal variations of Synechococcus assemblage structures in estuarine waters and coastal waters of Hong Kong Appl. Environ. Microbiol. 81(21):7644–7655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Liu H, Campbell L, Landry MR, Nolla HA, Brown SL, Constantinou J (1998) Prochlorococcus and Synechococcus growth rates and contributions to production in the Arabian Sea during the 1995 southwest and northeast monsoons Deep Sea Res (II Top Stud Oceanogr) 45(10):2327–2352

    Article  Google Scholar 

  23. Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, Scanlan DJ (2003) Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea Appl. Environ. Microbiol. 69(5):2430–2443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Nucleic Acids Res. 22(22):4673–4680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities Appl. Environ. Microbiol. 75(23):7537–7541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection Bioinformatics 27(16):2194–2200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kumar S, Tamura K, Nei M (1994) MEGA: molecular evolutionary genetics analysis software for microcomputers Computer Applications in the Biosciences: CABIOS 10(2):189–191

    PubMed  CAS  Google Scholar 

  28. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution Bioinformatics 14(9):817–818

    Article  PubMed  CAS  Google Scholar 

  29. Clarke K, Warwick R (1994) An approach to statistical analysis and interpretation. Change in Marine Communities 2

  30. Mühling M, Fuller NJ, Somerfield PJ, Post AF, Wilson WH, Scanlan DJ, Joint I, Mann NH (2006) High resolution genetic diversity studies of marine Synechococcus isolates using rpoC1-based restriction fragment length polymorphism Aquat. Microb. Ecol. 45(3):263–275

    Article  Google Scholar 

  31. Hall TA 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series, vol 41. [London]. Information Retrieval Ltd., c1979-c2000., pp 95–98

  32. Choi DH, Hn J (2009) Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea FEMS Microbiol. Ecol. 69(3):439–448

    Article  PubMed  CAS  Google Scholar 

  33. Olson R, Chisholm S, Zettler E, Armbrust E (1988) Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry Deep Sea Res (I Oceanogr Res Pap) 35(3):425–440

    Article  CAS  Google Scholar 

  34. Allawi HT, SantaLucia J (1997) Thermodynamics and NMR of internal G-T mismatches in DNA Biochemistry 36(34):10581–10594

    Article  PubMed  CAS  Google Scholar 

  35. Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, Not F, Massana R, Ulloa O, Scanlan DJ (2008) Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes Environ. Microbiol. 10(1):147–161

    PubMed  Google Scholar 

  36. Choi DH, Noh JH, Lee J-H (2014) Application of pyrosequencing method for investigating the diversity of Synechococcus subcluster 5.1 in open ocean Microbes Environ. 29(1):17

    Article  PubMed  Google Scholar 

  37. Lee SK, Wang H, Law SH, Wu RS, Kong RY (2002) Analysis of the 16S–23S rDNA intergenic spacers (IGSs) of marine vibrios for species-specific signature DNA sequences Mar. Pollut. Bull. 44(5):412–420

    Article  PubMed  CAS  Google Scholar 

  38. Robertson BR, Tezuka N, Watanabe MM (2001) Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content Int. J. Syst. Evol. Microbiol. 51(3):861–871

    Article  PubMed  CAS  Google Scholar 

  39. Haverkamp T, Schouten D, Doeleman M, Wollenzien U, Huisman J, Stal LJ (2009) Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea The ISME Journal 3(4):397–408

    Article  PubMed  CAS  Google Scholar 

  40. Kirk JT (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge,

    Book  Google Scholar 

  41. Jing H, Zhang R, Pointing SB, Liu H, Qian P (2009) Genetic diversity and temporal variation of the marine Synechococcus community in the subtropical coastal waters of Hong Kong Can. J. Microbiol. 55(3):311–318

    Article  PubMed  CAS  Google Scholar 

  42. Humily F, Farrant GK, Marie D, Partensky F, Mazard S, Perennou M, Labadie K, Aury J-M, Wincker P, Segui AN (2014) Development of a targeted metagenomic approach to study a genomic region involved in light harvesting in marine Synechococcus FEMS Microbiol. Ecol. 88(2):231–249

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the following research grants: General Research Fund (661912, 661813) by Hong Kong Research Grants Council, the National Key Scientific Research Projects of China (2015CB954003), and Natural Science Foundation of China (41330961). We thank Candy Lee for providing Synechococcus strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbin Liu.

Electronic Supplementary Material

Fig S1

(DOCX 1626 kb).

Fig S2

(DOCX 1219 kb).

Fig S3

(DOCX 304 kb).

Fig S4

(DOCX 2335 kb).

Fig S5

(DOCX 78 kb).

Fig S6

(DOCX 39 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, X., Liu, H., Choi, D. et al. Variation of Synechococcus Pigment Genetic Diversity Along Two Turbidity Gradients in the China Seas. Microb Ecol 75, 10–21 (2018). https://doi.org/10.1007/s00248-017-1021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1021-z

Keywords

Navigation