Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Curious Case of Achromobacter eurydice, a Gram-Variable Pleomorphic Bacterium Associated with European Foulbrood Disease in Honeybees

Abstract

Honeybees are prone to parasite and pathogen infestations/infections due to their social colony life. Bacterial pathogens in particular lead to destructive infections of the brood. European foulbrood is caused by the bacterium Melissococcus plutonius in combination with several other Gram-positive bacteria (Achromobacter eurydice, Bacillus pumilus, Brevibacillus laterosporus, Enterococcus faecalis, Paenibacillus alvei, Paenibacillus dendritiformis) involved as secondary invaders following the initial infection. More than a century ago, A. eurydice was discovered to be associated with European foulbrood and morphologically and biochemically characterized. However, since the 1950s–1960s, only a few studies are known covering the biological relevance of this bacterium. Here, we review the biology, ecology, morphology, and biochemistry and discuss the still unclear systematic classification of A. eurydice.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bergey DH (1925) Bergey’s Manual of Determinative Bacteriology, a key for the identification of organisms of the class schizomycetes, 2th edn. The Williams & Wilkins Company, Baltimore

  2. 2.

    Brisou J, Prévot AR (1954) Études de systématique bactérienne X. Révision des espèces réunies dans la genre Achromobacter. Ann Inst Pasteur 86:722–728

  3. 3.

    White GF (1912) The cause of European foul brood. U.S. Department of Agriculture, Circular No. 157, p 1–15

  4. 4.

    Gubler HU (1954) Bakteriologische Untersuchungen über die gutartige Faulbrut der Honigbiene. Pathol Bakteriol 17:507–513

  5. 5.

    Tarr HLA (1936) Studies on European foul brood of bees II. The production of the disease experimentally. Ann Appl Biol 23:558–584. doi:10.1111/j.1744-7348.1936.tb06111.x

  6. 6.

    Tarr HLA (1937) Studies on European foul brood of bees: further experiments on the production of the disease. Ann Appl Biol 24:614–626. doi:10.1111/j.1744-7348.1937.tb05857.x

  7. 7.

    Bailey L (1957a) European foul brood: a disease of the larval honeybee (Apis mellifera L.) caused by a combination of Streptococcus pluton (Bacillus pluton White) and Bacterium eurydice White. Nature 180:1214–1215. doi:10.1038/1801214a0

  8. 8.

    Bailey L (1957c) The isolation and cultural characteristics of Streptococcus pluton and further observations on Bacterium eurydice. J Gen Microbiol 17:39–48. doi:10.1099/00221287-17-1-39

  9. 9.

    Bailey L (1957b) The cause of European foul brood. Bee World 38:85–89. doi:10.1080/0005772X.1957.11094983

  10. 10.

    Bailey L (1956) Aetiology of European foul brood; a disease of the larval honey-bee. Nature 178:1130. doi:10.1038/1781130a0

  11. 11.

    Erler S, Denner A, Bobiş O, Forsgren E, Moritz RFA (2014) Diversity of honey stores and their impact on pathogenic bacteria of the honeybee, Apis mellifera. Ecol Evol 20:3960–3967. doi:10.1002/ece3.1252

  12. 12.

    Forsgren E (2010) European foulbrood in honey bees. J Invertebr Pathol 103:S5–S9. doi:10.1016/j.jip.2009.06.016

  13. 13.

    Gaggia F, Baffoni L, Stenico V, Alberoni D, Buglione E, Lilli A, Di Gioia D, Porrini C (2015) Microbial investigation on honey bee larvae showing atypical symptoms of European foulbrood. B Insectol 68:321–327

  14. 14.

    White GF (1920) European foulbrood. U.S. Department of Agriculture, Bulletin No. 810, p 1–48

  15. 15.

    Alippi AM (1991) A comparison of laboratory techniques for the detection of significant bacteria of the honey bee, Apis mellifera, in Argentina. J Apicult Res 30:75–80. doi:10.1080/00218839.1991.11101237

  16. 16.

    Bailey L (1959a) Recent research on the natural history of European foul brood disease. Bee World 40:66–70. doi:10.1080/0005772X.1959.11096701

  17. 17.

    Burri R (1941) Neue Untersuchungen über den Erreger der Sauerbrut der Bienen. Beiheft Schweiz Bienen-Ztg 1:1–28

  18. 18.

    Burri R (1943) Weitere Beobachtungen über Formwandlung beim Erreger der Sauerbrut der Bienen. Beiheft Schweiz Bienen-Ztg 5:209–260

  19. 19.

    Djordjevic SP, Noone K, Smith L, Hornitzky MAZ (1998) Development of a hemi-nested PCR assay for the specific detection of Melissococcus pluton. J Apicult Res 37:165–174. doi:10.1080/00218839.1998.11100968

  20. 20.

    Bailey L (1960) The epizootiology of European foulbrood of the larval honey bee, Apis mellifera Linnaeus. J Insect Pathol 2:67–83

  21. 21.

    Ludvigsen J, Rangberg A, Avershina E, Sekelja M, Kreibich C, Amdam G, Rudi K (2015) Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season. Microbes Environ 30:235–244. doi:10.1264/jsme2.ME15019

  22. 22.

    Bailey L (1963a) The habitat of ‘Bacterium eurydice’. J Gen Microbiol 31:147–150. doi:10.1099/00221287-31-1-147

  23. 23.

    Bailey L (1974) An unusual type of Streptococcus pluton from the Eastern hive bee. J Invertebr Pathol 23:246–247. doi:10.1016/0022-2011(74)90192-X

  24. 24.

    Bailey L (1959b) An improved method for the isolation of Streptococcus pluton, and observations on its distribution and ecology. J Insect Pathol 1:80–85

  25. 25.

    Alippi AM (1999) Bacterial diseases. Bee Disease Diagnosis CIHEAM – Options Mediterraneennes, p 31–59

  26. 26.

    Kluge R (1963) Untersuchungen über der Darmflora der Honigbiene Apis mellifera. Z Bieneforsch 6:141–169

  27. 27.

    Gilliam M, Prest DB (1987) Microbiology of feces of the larval honey bee, Apis mellifera. J Invertebr Pathol 49:70–75. doi:10.1016/0022-2011(87)90127-3

  28. 28.

    Erler S, Moritz RFA (2016) Pharmacophagy and pharmacophory: mechanisms of self-medication and disease prevention in the honeybee colony (Apis mellifera). Apidologie 47:389–411. doi:10.1007/s13592-015-0400-z

  29. 29.

    Shrivastava KP (1982) Bacterium (Lactobacillus?) eurydice strains from bumble bees. J Invertebr Pathol 40:180–185. doi:10.1016/0022-2011(82)90113-6

  30. 30.

    Durrer S, Schmid-Hempel P (1994) Shared use of flowers leads to horizontal pathogen transmission. Proc R Soc B 258:299–302. doi:10.1098/rspb.1994.0176

  31. 31.

    Graystock P, Goulson D, Hughes WOH (2015) Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc R Soc B 282:20151371. doi:10.1098/rspb.2015.1371

  32. 32.

    Bailey L (1968) Honey bee pathology. Annu Rev Entomol 13:191–212. doi:10.1146/annurev.en.13.010168.001203

  33. 33.

    Bailey L, Ball BV (1991) Honey bee pathology. Academic Press, London

  34. 34.

    Burnside CE (1934) Studies on the bacteria associated with European foulbrood. J Econ Entomol 27:656–668. doi:10.1093/jee/27.3.656

  35. 35.

    Jones D (1975) A numerical taxonomic study of coryneform and related bacteria. J Gen Microbiol 87:52–96. doi:10.1099/00221287-87-1-52

  36. 36.

    Krieg A (1961) Grundlagen der Insektenpathologie. Viren-, Rickettsien- und Bakterien-Infektionen. Wissenschaftl. Forschungsber. Naturw. Reihe, Bd. 69. Springer-Verlag, Berlin Heidelberg

  37. 37.

    Hammes WP, Hertel C (2006) The genera Lactobacillus and Carnobacterium. Prokaryotes 4:320–403. doi:10.1007/0-387-30744-3_10

  38. 38.

    Busse H-J, Auling G (2015) Achromobacter. Bergey's Manual of Systematics of Archaea and Bacteria, John Wiley & Sons in association with Bergey's Manual Trust, p 1–14. doi:10.1002/9781118960608.gbm00926

  39. 39.

    Hammes WP, Hertel C (2015) Lactobacillus. Bergey's Manual of Systematics of Archaea and Bacteria, John Wiley & Sons in association with Bergey's Manual Trust, p 1–76. doi: 10.1002/9781118960608.gbm00604

  40. 40.

    Budge GE, Barrett B, Jones B, Pietravalle S, Marris G, Chantawannakul P, Thwaites R, Hall J, Cuthbertson AGS, Brown MA (2010) The occurrence of Melissococcus plutonius in healthy colonies of Apis mellifera and the efficacy of European foulbrood control measures. J Invertebr Pathol 105:164–170. doi:10.1016/j.jip.2010.06.004

  41. 41.

    Guo Z, Goswami A, Mirfakhrae KD, Patel RN (1999) Asymmetric acyloin condensation catalyzed by phenylpyruvate decarboxylase. Tetrahedron-Asymmetr 10:4667–4675. doi:10.1016/S0957-4166(99)00548-0

  42. 42.

    Steinhaus EA (1963) Insect pathology, an advanced treatise. Academic Press, New York

  43. 43.

    Shimanuki H, Knox DA (2000) Diagnosis of honey bee diseases. U.S. Department of Agriculture, Agriculture Handbook No. AH-690, 61 pp

  44. 44.

    Bailey L (1963b) The pathogenicity for honey-bee larvae of microorganisms associated with European foulbrood. J Insect Pathol 5:198–205

  45. 45.

    Burri R (1947) Die Beziehungen der Bakterien zum Lebenszyklus der Honigbiene. Schweiz Bienen-Ztg 70:273–276

  46. 46.

    Erban T, Ledvinka O, Kamler M, Hortova B, Nesvorna M, Tyl J, Titera D, Markovic M, Hubert J (2017) European foulbrood in Czechia after 40 years: application of next-generation sequencing to analyze Melissococcus plutonius transmission and influence on the bacteriome of Apis mellifera. PeerJ Preprints 4:e2618v1. doi:10.7287/peerj.preprints.2618v1

  47. 47.

    Djukic M, Poehlein A, Strauß J, Tann FJ, Leimbach A, Hoppert M, Daniel R (2015a) High quality draft genome of Lactobacillus kunkeei EFB6, isolated from a German European foulbrood outbreak of honeybees. Stand Genomic Sci 10:16. doi:10.1186/1944-3277-10-16

  48. 48.

    Djukic M, Daniel R, Poehlein A (2015b) First insights into the genome of Fructobacillus sp. EFB-N1, isolated from honey bee larva infected with European foulbrood. Genome Announc 3:e00868–e00815. doi:10.1128/genomeA.00868-15

  49. 49.

    Endo A, Futagawa-Endo Y, Dicks LMT (2009) Isolation and characterization of fructophilic lactic acid bacteria from fructose-rich niches. Syst Appl Microbiol 32:593–600. doi:10.1016/j.syapm.2009.08.002

  50. 50.

    Edwards CG, Haag KM, Collins MD, Hutson RA, Huang YC (1998) Lactobacillus kunkeei sp. nov.: a spoilage organism associated with grape juice fermentations. J Appl Microbiol 84:698–702. doi:10.1046/j.1365-2672.1998.00399.x

  51. 51.

    Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L, Olofsson TC (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One 7:e33188. doi:10.1371/journal.pone.0033188

  52. 52.

    Gilliam M (1997) Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiol Lett 155:1–10. doi: 10.1016/S0378-1097(97)00337-6

  53. 53.

    Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384. doi:10.1038/nrmicro.2016.43

Download references

Acknowledgements

Financial support was granted by the German Research Foundation -DFG (ER 786/1-1 to S.E.). Further, we thank Bristol-Myers Squibb and G. E. Budge for sharing information on the origin of the bacteria used in their studies, and COLOSS (Prevention of honey bee COlony LOSSes) for fostering international collaboration between honeybee researchers.

Author information

Correspondence to Silvio Erler.

Electronic supplementary material

ESM 1

(PDF 85 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Erler, S., Lewkowski, O., Poehlein, A. et al. The Curious Case of Achromobacter eurydice, a Gram-Variable Pleomorphic Bacterium Associated with European Foulbrood Disease in Honeybees. Microb Ecol 75, 1–6 (2018). https://doi.org/10.1007/s00248-017-1007-x

Download citation

Keywords

  • Host-parasite interaction
  • Apis mellifera
  • Lactobacillus kunkeei
  • Fructobacillus fructosus
  • Foulbrood
  • Brood disease