Extensive Overlap of Tropical Rainforest Bacterial Endophytes between Soil, Plant Parts, and Plant Species

Abstract

The extent to which distinct bacterial endophyte communities occur between different plant organs and species is poorly known and has implications for bioprospecting efforts. Using the V3 region of the bacterial 16S ribosomal RNA (rRNA) gene, we investigated the diversity patterns of bacterial endophyte communities of three rainforest plant species, comparing leaf, stem, and root endophytes plus rhizosphere soil community. There was extensive overlap in bacterial communities between plant organs, between replicate plants of the same species, between plant species, and between plant organ and rhizosphere soil, with no consistent clustering by compartment or host plant species. The non-metric multidimensional scaling (NMDS) analysis highlighted an extensively overlapping bacterial community structure, and the β-nearest taxon index (βNTI) analysis revealed dominance of stochastic processes in community assembly, suggesting that bacterial endophyte operational taxonomic units (OTUs) were randomly distributed among plant species and organs and rhizosphere soil. Percentage turnover of OTUs within pairs of samples was similar both for plant individuals of the same species and of different species at around 80–90%. Our results suggest that sampling extra individuals, extra plant organs, extra species, or use of rhizosphere soil, might be about equally effective for obtaining new OTUs for culture. These observations suggest that the plant endophyte community may be much more diverse, but less predictable, than would be expected from culturing efforts alone.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Ryan RP, Germaine K, Franks A, et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278:1–9. doi:10.1111/j.1574-6968.2007.00918.x

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8:e56329. doi:10.1371/journal.pone.0056329

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  3. 3.

    Sessitsch A, Hardoim P, Döring J, et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol. Plant-Microbe Interact. 25:28–36

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Kogel K-H, Franken P, Hückelhoven R (2006) Endophyte or parasite—what decides? Curr. Opin. Plant Biol. 9:358–363. doi:10.1016/j.pbi.2006.05.001

    PubMed  Article  Google Scholar 

  5. 5.

    Newton AC, Fitt BDL, Atkins SD, et al (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions. Trends Microbiol. 18:365–373. doi:10.1016/j.tim.2010.06.002

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    van der Lelie D, Taghavi S, Monchy S, et al (2009) Poplar and its bacterial endophytes: coexistence and harmony. CRC Crit rev Plant Sci 28:346–358. doi:10.1080/07352680903241204

    CAS  Article  Google Scholar 

  7. 7.

    Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42:669–678. doi:10.1016/j.soilbio.2009.11.024

    CAS  Article  Google Scholar 

  8. 8.

    Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28:1327–1350. doi:10.1007/s11274-011-0979-9

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Baba MS, Zin NM, Hassan ZAA, et al (2015) In vivo antimalarial activity of the endophytic actinobacteria, Streptomyces SUK 10. J. Microbiol. 53:847–855. doi:10.1007/s12275-015-5076-6

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Yadav M, Yadav A, Kumar S, Yadav JP (2016) Spatial and seasonal influences on culturable endophytic mycobiota associated with different tissues of Eugenia jambolana Lam. and their antibacterial activity against MDR strains. BMC Microbiol. 16:44. doi:10.1186/s12866-016-0664-0

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  11. 11.

    Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl. Microbiol. Biotechnol. 99:2955–2965. doi:10.1007/s00253-015-6487-3

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Sarmin NIM, Zin NM, Tien NK, et al (2012) Ethnomedicinal plants as host of bioactive endophytic Actinomycetes. Sains Malaysiana 41:547–551

    Google Scholar 

  13. 13.

    Jacobs MJ, Bugbee WM, Gabrielson DA (1985) Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can. J. Bot. 63:1262–1265. doi:10.1139/b85-174

    Article  Google Scholar 

  14. 14.

    Whitesides SK, Spotts RA (1991) Frequency, distribution, and characteristics of endophytic Pseudomonas syringe in pear trees. Phytopathology 81:453–457

    Article  Google Scholar 

  15. 15.

    Brooks DS, Gonzalez CF, Appel DN, Filer TH (1994) Evaluation of endophytic bacteria as potential biological-control agents for oak wilt. Biol. Control 4:373–381. doi:10.1006/bcon.1994.1047

    Article  Google Scholar 

  16. 16.

    Elbeltagy A, Nishioka K, Suzuki H, et al (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant nu Tr 463:617–629. doi:10.1080/00380768.2000.10409127

    Article  Google Scholar 

  17. 17.

    Zin N, Loi C, Sarmin N, Rosli A (2010) Cultivation-dependent characterization of endophytic Actinomycetes. Res. J. Microbiol. 5:717–724

    Article  Google Scholar 

  18. 18.

    El-Deeb B, Bazaid S, Gherbawy Y, Elhariry H (2012) Characterization of endophytic bacteria associated with rose plant (Rosa damascena trigintipeta) during flowering stage and their plant growth promoting traits. J. Plant Interact. 7:248–253. doi:10.1080/17429145.2011.637161

    Article  Google Scholar 

  19. 19.

    Ramond JB, Tshabuse F, Bopda CW, et al (2013) Evidence of variability in the structure and recruitment of rhizospheric and endophytic bacterial communities associated with arable sweet sorghum (Sorghum bicolor (L) Moench). Plant Soil 372:265–278. doi:10.1007/s11104-013-1737-6

    CAS  Article  Google Scholar 

  20. 20.

    Edwards J, Johnson C, Santos-Medellín C, et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. 112:E911–E920. doi:10.1073/pnas.1414592112

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Tian B-Y, Cao Y, Zhang K-Q, et al (2015) Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Sci rep 5:17087. doi:10.1038/srep17087

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  22. 22.

    Delmotte N, Knief C, Chaffron S, et al (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. U. S. a. 106:16428–16433. doi:10.1073/pnas.0905240106

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Lundberg DS, Lebeis SL, Paredes SH, et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90. doi:10.1038/nature11237

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  24. 24.

    Bogas AC, Ferreira AJ, Araújo WL, et al (2015) Endophytic bacterial diversity in the phyllosphere of Amazon Paullinia cupana associated with asymptomatic and symptomatic anthracnose. Spring 4:258. doi:10.1186/s40064-015-1037-0

    Article  Google Scholar 

  25. 25.

    Qin S, Chen H, Zhao G, et al (2012) Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. doi:10.1111/j.1758-2229.2012.00357.x

  26. 26.

    Köberl M, Schmidt R, Ramadan EM, et al (2013) The microbiome of medicinal plants: diversity and importance for plant growth, quality, and health. 1219:54–51. doi: 10.3389/fmicb.2013.00400

  27. 27.

    Hao DC, Song SM, Mu J, et al (2016) Unearthing microbial diversity of Taxus rhizosphere via MiSeq high-throughput amplicon sequencing and isolate characterization. Sci rep 6:22006. doi:10.1038/srep22006

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  28. 28.

    Akinsanya MA, Goh JK, Lim SP, Ting ASY (2015) Diversity, antimicrobial and antioxidant activities of culturable bacterial endophyte communities in Aloe vera. FEMS Microbiol. Lett. 362:fnv184. doi:10.1093/femsle/fnv184

    PubMed  Article  Google Scholar 

  29. 29.

    Jin H, Yang XY, Yan ZQ, et al (2014) Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L. Syst. Appl. Microbiol. 37:376–385. doi:10.1016/j.syapm.2014.05.001

    PubMed  Article  Google Scholar 

  30. 30.

    Montecchia MS, Tosi M, Soria MA, et al (2015) Pyrosequencing reveals changes in soil bacterial communities after conversion of Yungas forests to agriculture. PLoS One 10:e0119426. doi:10.1371/journal.pone.0119426

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  31. 31.

    Taketani R, Lima A, da Jesus E, C (2013) Bacterial community composition of anthropogenic biochar and Amazonian anthrosols assessed by 16S rRNA gene 454 pyrosequencing. Antonie van Leeuwenhoek 104:233–242

  32. 32.

    da Jesus E, C, Marsh T, Tiedje J (2009) Changes in land use alter the structure of bacterial communities in western Amazon soils. The ISME Journal 3:1004–1011

  33. 33.

    Lima A, Cannavan F, Navarrete A, Teixeira W (2015) Amazonian dark earth and plant species from the Amazon region contribute to shape rhizosphere bacterial communities. Microb. Ecol. 69:855–866

    Article  Google Scholar 

  34. 34.

    Noyce G, Winsborough C, Fulthorpe R (2016) The microbiomes and metagenomes of forest biochars. Sci. Rep.

  35. 35.

    Sheng HM, Gao HS, Xue LG, et al (2011) Analysis of the composition and characteristics of culturable endophytic bacteria within subnival plants of the Tianshan Mountains, northwestern China. Curr. Microbiol. 62:923–932. doi:10.1007/s00284-010-9800-5

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Bulgari D, Casati P, Quaglino F, et al (2014) Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process. BMC Microbiol. 14:198. doi:10.1186/1471-2180-14-198

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Carrell AA, Frank AC (2015) Bacterial endophyte communities in the foliage of coast redwood and giant sequoia. Front. Microbiol. doi:10.3389/fmicb.2015.01008

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Ulrich K, Ulrich A, Ewald D (2008) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol. Ecol. 63:169–180. doi:10.1111/j.1574-6941.2007.00419.x

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Passari AK, Mishra VK, Saikia R, et al (2015) Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front. Microbiol. 6:1–13. doi:10.3389/fmicb.2015.00273

    Article  Google Scholar 

  40. 40.

    Brader G, Compant S, Mitter B, et al (2014) Metabolic potential of endophytic bacteria. Curr. Opin. Biotechnol. 27:30–37. doi:10.1016/j.copbio.2013.09.012

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  41. 41.

    Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. doi:10.1128/MMBR.67.4.491-502.2003

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front. Microbiol. 4:65. doi:10.3389/fmicb.2013.00065

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Bhore S, Deivanai S, Bindusara A, Prabhakaran G (2014) Culturable bacterial endophytes isolated from mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice. J Nat Sci Biol med 5:437. doi:10.4103/0976-9668.136233

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Kusari S, Singh S, Jayabaskaran C (2014) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol. 32:297–303. doi:10.1016/j.tibtech.2014.03.009

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Laforest-Lapointe I, Messier C, Kembel SW, et al (2016) Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4:27. doi:10.1186/s40168-016-0174-1

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Kaul S, Sharma T, K Dhar M (2016) “Omics” tools for better understanding the plant-endophyte interactions. Front. Plant Sci. 7:955. doi: 10.3389/fpls.2016.00955

  47. 47.

    Rajasekaran D, Palombo EA, Yeo TC, et al (2013) Identification of traditional medicinal plant extracts with novel anti-influenza activity. PLoS One. doi:10.1371/journal.pone.0079293

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Ling SK, Tanaka T, Kouno I (2001) Iridoids from Rothmannia macrophylla. J. Nat. Prod. 64:796–798. doi:10.1021/np000524c

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Chen Y-F, Huang Y, Tang W-Z, et al (2009) Antinociceptive activity of Paederosidic acid methyl Ester (PAME) from the n-butanol fraction of Paederia scandens in mice. Pharmacol. Biochem. Behav. 93:97–104. doi:10.1016/j.pbb.2009.04.016

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Beckers B, Op De Beeck M, Thijs S, et al (2016) Performance of 16s rDNA primer pairs in the study of rhizosphere and endosphere bacterial microbiomes in Metabarcoding studies. Front. Microbiol. 7:650. doi:10.3389/fmicb.2016.00650

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Huse SM, Dethlefsen L, Huber JA, et al (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet. doi:10.1371/journal.pgen.1000255

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Kerfahi D, Tripathi BM, Singh D, et al (2015) Effects of functionalized and raw multi-walled carbon nanotubes on soil bacterial community composition. PLoS One 10:e0123042. doi:10.1371/journal.pone.0123042

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  53. 53.

    Zhou H-W, Li D-F, Tam NF-Y, et al (2011) BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME j 5:741–749. doi:10.1038/ismej.2010.160

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Schloss PD, Westcott SL, Ryabin T, et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537–7541. doi:10.1128/AEM.01541-09

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  55. 55.

    Masella AP, Bartram AK, Truszkowski JM, et al (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13:31. doi:10.1186/1471-2105-13-31

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  56. 56.

    Chun J, Lee J, Jung Y, et al (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences, pp. 2259–2261. doi:10.1099/ijs.0.64915-0

    Google Scholar 

  57. 57.

    Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol. 12:1889–1898. doi:10.1111/j.1462-2920.2010.02193.x

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  58. 58.

    Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. doi:10.1371/journal.pone.0027310

    Google Scholar 

  59. 59.

    Clarke K, Ainsworth M (1993) A method of linking multivariate community. Mar. Ecol. Prog. Ser. 92:205–219

    Article  Google Scholar 

  60. 60.

    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. JRStatSocSerB StatMethodol 57:289–300

    Google Scholar 

  61. 61.

    Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF (2015) Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl. Acad. Sci. U. S. a. 112:E1326–E1332. doi:10.1073/pnas.1414261112

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  62. 62.

    Horner-Devine MC, Bohannan BJM (2006) Phylogenetic clustering and overdispersion in bacterial communities. Ecology 87:S100–S108

    PubMed  Article  Google Scholar 

  63. 63.

    Stegen JC, Lin X, Konopka AE, Fredrickson JK (2012) Stochastic and deterministic assembly processes in subsurface microbial communities. ISME j 6:1653–1664. doi:10.1038/ismej.2012.22

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  64. 64.

    Kembel SW, Hubbell SP (2006) The phylogenetic structure of a neotropical forest tree community. Ecology 87:S86–S99. doi:10.1890/0012-9658(2006)87[86:TPSOAN]2.0.CO;2

    PubMed  Article  Google Scholar 

  65. 65.

    Fine PVA, Kembel SW (2011) Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography (cop) 34:552–565. doi:10.1111/j.1600-0587.2010.06548.x

    Article  Google Scholar 

  66. 66.

    Esty WW (1986) The efficiency of Good’s nonparametric coverage estimator. Ann. Stat. 14:1257–1260

    Article  Google Scholar 

  67. 67.

    Otsuka S, Sudiana I, Komori A, et al (2008) Community structure of soil bacteria in a tropical rainforest several years after fire. Microbes Env 23:49–56. doi:10.1264/jsme2.23.49

    Article  Google Scholar 

  68. 68.

    Lin Y-T, Huang Y-J, Tang S-L, et al (2010) Bacterial community diversity in undisturbed Perhumid montane Forest soils in Taiwan. Microb. Ecol. 59:369–378. doi:10.1007/s00248-009-9574-0

    PubMed  Article  Google Scholar 

  69. 69.

    Chan OC, Yang X, Fu Y, et al (2006) 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. FEMS Microbiol. Ecol. 58:247–259

    PubMed  CAS  Article  Google Scholar 

  70. 70.

    Tripathi BM, Kim M, Singh D, et al (2012) Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microb. Ecol. 64:474–484. doi:10.1007/s00248-012-0028-8

    PubMed  Article  Google Scholar 

  71. 71.

    Oh YM, Kim M, Lee-Cruz L, et al (2012) Distinctive bacterial communities in the rhizoplane of four tropical tree species. Microb. Ecol. 64:1018–1027. doi:10.1007/s00248-012-0082-2

    PubMed  Article  Google Scholar 

  72. 72.

    Tripathi BM, Song W, Slik JWF, et al (2016) Distinctive tropical forest variants have unique soil microbial communities, but not always low microbial diversity. Front. Microbiol. 7:1–11. doi:10.3389/fmicb.2016.00376

    Article  Google Scholar 

  73. 73.

    Hu W, Zhang Q, Tian T, et al (2015) Relative roles of deterministic and stochastic processes in driving the vertical distribution of bacterial communities in a permafrost core from the Qinghai-Tibet plateau, China. PLoS One 10:1–19. doi:10.1371/journal.pone.0145747

    Article  Google Scholar 

  74. 74.

    Wang J, Shen J, Wu Y, et al (2013) Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME j 7:1310–1321. doi:10.1038/ismej.2013.30

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  75. 75.

    Rominger A, Miller T, Collins S (2009) Relative contributions of neutral and niche-based processes to the structure of a desert grassland grasshopper community. Oecologia 161:791–800

    PubMed  Article  Google Scholar 

  76. 76.

    Caruso T, Chan Y, Lacap DC, et al (2011) Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME j 5:1406–1413. doi:10.1038/ismej.2011.21

    PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Wang J, Wu Y, Jiang H, et al (2008) High beta diversity of bacteria in the shallow terrestrial subsurface. Environ. Microbiol. 10:2537–2549

    PubMed  CAS  Article  Google Scholar 

  78. 78.

    Zhang X, Johnston ER, Liu W, et al (2016) Environmental changes affect the assembly of soil bacterial community primarily by mediating stochastic processes. Glob. Chang. Biol. 22:198–207. doi:10.1111/gcb.13080

    PubMed  Article  Google Scholar 

  79. 79.

    Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press

  80. 80.

    Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Missouri bot Gard 75:1–34. doi:10.2307/2399464

    Article  Google Scholar 

  81. 81.

    Hollister EB, Engledow AS, Jo A, et al (2010) Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME j 4:829–838. doi:10.1038/ismej.2010.3

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Kembel SW, Mueller RC (2014) Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92:303–311. doi:10.1139/cjb-2013-0194

    Article  Google Scholar 

  83. 83.

    Swenson N (2011) Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient. Proc. R. Soc. Lond. B Biol. Sci. 278:877–884

    Article  Google Scholar 

  84. 84.

    Condit R, Pitman N, Leigh E, Chave J (2002) Beta-diversity in tropical forest trees. Science 295(80):666–669. doi:10.1126/science.1066854

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Terborgh J (1992) Maintenance of diversity in tropical forests. Biotropica 24:283–292

    Article  Google Scholar 

  86. 86.

    Ellwood F, Manica A, Foster W (2009) Stochastic and deterministic processes jointly structure tropical arthropod communities. Ecol. Lett. 12:227–284. doi:10.1111/j.1461-0248.2009.01284.x

    Article  Google Scholar 

  87. 87.

    Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20:170–180. doi:10.1111/j.1466-8238.2010.00592.x

    Article  Google Scholar 

  88. 88.

    Barbier S, Gosselin F, Balandier P (2008) Influence of tree species on understory vegetation diversity and mechanisms involved—a critical review for temperate and boreal forests. For. Ecol. Manag. 254:1–15

    Article  Google Scholar 

  89. 89.

    Miyambo T, Makhalanyane TP, Cowan DA, Valverde A (2016) Plants of the fynbos biome harbour host species-specific bacterial communities. FEMS Microbiol. Lett. 363:fnw122. doi:10.1093/femsle/fnw122

    PubMed  Article  Google Scholar 

  90. 90.

    Carrell A, Carper D (2016) Subalpine conifers in different geographical locations host highly similar foliar bacterial endophyte communities. FEMS Microbiol. Ecol. 92:fiw124

    PubMed  Article  Google Scholar 

  91. 91.

    Ishida T, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytol. 174:430–440

    PubMed  CAS  Article  Google Scholar 

  92. 92.

    Legendre P, Mi X, Ren H, et al (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674. doi:10.1890/07-1880.1

    PubMed  Article  Google Scholar 

  93. 93.

    Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

    Google Scholar 

  94. 94.

    Vellend M, Srivastava DS, Anderson KM, et al (2014) Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123:1420–1430. doi:10.1111/oik.01493

    Article  Google Scholar 

  95. 95.

    Karthikeyan B, Jaleel CA, Lakshmanan GMA, Deiveekasundaram M (2008) Studies on rhizosphere microbial diversity of some commercially important medicinal plants. Colloids Surfaces B Biointerfaces 62:143–145. doi:10.1016/j.colsurfb.2007.09.004

    PubMed  CAS  Article  Google Scholar 

  96. 96.

    Andreote FD, Azevedo JL, Araújo WL (2009) Assessing the diversity of bacterial communities associated with plants. Braz. J. Microbiol. 40:417–432. doi:10.1590/S1517-83822009000300001

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  97. 97.

    Li X, Rui J, Xiong J, et al (2014) Functional potential of soil microbial communities in the maize rhizosphere. PLoS One. doi:10.1371/journal.pone.0112609

    Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Szymańska S, Płociniczak T, Piotrowska-Seget Z, Hrynkiewicz K (2016) Endophytic and rhizosphere bacteria associated with the roots of the halophyte Salicornia europaea L.—community structure and metabolic potential. Microbiol. Res. 192:37–51. doi:10.1016/j.micres.2016.05.012

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    Costa R, Götz M, Mrotzek N, et al (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol. Ecol. 56:236–249. doi:10.1111/j.1574-6941.2005.00026.x

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, et al (2016) Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol. 209:798–811. doi:10.1111/nph.13697

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Bakker MG, Schlatter DC, Otto-Hanson L, Kinkel LL (2014) Diffuse symbioses: roles of plant-plant, plant-microbe and microbe-microbe interactions in structuring the soil microbiome. Mol. Ecol. 23:1571–1583. doi:10.1111/mec.12571

    PubMed  Article  Google Scholar 

  102. 102.

    Schlatter DC, Bakker MG, Bradeen JM, Kinkel LL (2015) Plant community richness and microbial interactions structure bacterial communities in soil. Ecology 96:134–142

    PubMed  Article  Google Scholar 

  103. 103.

    Makhalanyane TP, Valverde A, Gunnigle E, et al (2015) Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 39:203–221. doi:10.1093/femsre/fuu011

    PubMed  CAS  Article  Google Scholar 

  104. 104.

    Jackson CR, Randolph KC, Osborn SL, et al (2013) Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables. BMC Microbiol. 13:274. doi:10.1186/1471-2180-13-274

    PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Eevers N, Beckers B, Op de Beeck M, et al (2016) Comparison between cultivated and total bacterial communities associated with Cucurbita pepo using cultivation-dependent techniques and 454 pyrosequencing. Syst. Appl. Microbiol. 39:58–66. doi:10.1016/j.syapm.2015.11.001

    PubMed  CAS  Article  Google Scholar 

  106. 106.

    Qin S, Chen H-H, Zhao G-Z, et al (2012) Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environ. Microbiol. Rep. 4:522–531. doi:10.1111/j.1758-2229.2012.00357.x

    PubMed  Article  Google Scholar 

  107. 107.

    Tian B-Y, Cao Y, Zhang K-Q (2015) Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne Incognita, in tomato roots. Sci rep 5:17087. doi:10.1038/srep17087

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  108. 108.

    Liu Y, Li Y, Yao S, et al (2015) Diversity and distribution of endophytic bacterial community in the noni (Morinda citrifolia L.) plant. African J Microbiol res 9:1649–1657. doi:10.5897/AJMR2015.7443

    CAS  Article  Google Scholar 

  109. 109.

    Maignien L, DeForce EA, Chafee ME, et al (2014) Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana Phyllosphere communities. MBio 5:e00682–13-e00682–13. doi: 10.1128/mBio.00682-13

  110. 110.

    Gao C, Shi N-N, Chen L, et al (2016) Relationships between soil fungal and woody plant assemblages differ between ridge and valley habitats in a subtropical mountain forest. New Phytol. doi:10.1111/nph.14287

    Article  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Kim M, Heo E, Kang H, Adams J (2013) Changes in soil bacterial community structure with increasing disturbance frequency. Microb. Ecol. 66:171–181. doi:10.1007/s00248-013-0237-9

    PubMed  Article  Google Scholar 

  112. 112.

    Wang Z-Q, He J, Su Y-X, et al (2006) Isolation and identification of Bacillus anthracis in an accidental case. Wei Sheng Wu Xue Bao 46:460–462

    PubMed  Google Scholar 

  113. 113.

    Patra G, Vaissaire J, Weber-Levy M, et al (1998) Molecular characterization of Bacillus strains involved in outbreaks of anthrax in France in 1997. J. Clin. Microbiol. 36:3412–3414

    PubMed  PubMed Central  CAS  Google Scholar 

  114. 114.

    Bhore S, Komathi V, Kandasamy K (2013) Diversity of endophytic bacteria in medicinally important nepenthes species. J Nat Sci Biol med 4:431. doi:10.4103/0976-9668.117022

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Srinath R, Siva R, Babu S (2014) Bacillus anthracis-like strain-carrying P seudomonas FPVA gene occurs as endophyte in vegetables. J. Food Saf. 34:57–61. doi:10.1111/jfs.12095

    Article  Google Scholar 

  116. 116.

    Polter SJ, Caraballo AA, Lee YP, et al (2015) Isolation, identification, whole-genome sequencing, and annotation of four Bacillus Species, B. anthracis RIT375, B. circulans RIT379, B. altitudinis RIT380, and B. megaterium RIT381, from internal stem tissue of the insulin plant Costus Igneus. Genome Announc. doi:10.1128/genomeA.00847-15

    Article  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Hong Y, Liao D, Hu A, et al (2015) Diversity of endophytic and rhizoplane bacterial communities associated with exotic Spartina alterniflora and native mangrove using Illumina amplicon sequencing. Can. J. Microbiol. 61:723–733. doi:10.1139/cjm-2015-0079

    PubMed  CAS  Article  Google Scholar 

  118. 118.

    Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiol. Res. 164:493–513. doi:10.1016/j.micres.2008.08.007

    PubMed  CAS  Article  Google Scholar 

  119. 119.

    Melnick RL, Zidack NK, Bailey BA, et al (2008) Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biol. Control 46:46–56. doi:10.1016/j.biocontrol.2008.01.022

    Article  Google Scholar 

  120. 120.

    Alina SO, Constantinscu F, Petruţa CC (2015) Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection. Rom Biotechnol Lett 20:10737–10750

    Google Scholar 

  121. 121.

    Nielsen DS, Kobawila SC, Anyogu A, et al (2015) Lysinibacillus louembei sp. nov., a spore-forming bacterium isolated from Ntoba Mbodi, alkaline fermented leaves of cassava from the Republic of the Congo. Int. J. Syst. Evol. Microbiol. 65:4256–4262. doi:10.1099/ijsem.0.000570

    PubMed  CAS  Article  Google Scholar 

  122. 122.

    Duan Y-Q, He S-T, Li Q-Q, et al (2013) Lysinibacillus tabacifolii sp. nov., a novel endophytic bacterium isolated from Nicotiana tabacum leaves. J. Microbiol. 51:289–294. doi:10.1007/s12275-013-2338-z

    PubMed  CAS  Article  Google Scholar 

  123. 123.

    Gallegos-Monterrosa R, Maróti G, Bálint B, Kovács ÁT (2016) Draft genome sequence of the soil isolate Lysinibacillus fusiformis M5, a potential hypoxanthine producer. Genome Announc 4:e01272–e01216. doi:10.1128/genomeA.01272-16

    PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Reghuvaran A, Jacob KK, Ravindranath AD (2012) Isolation and characterization of nitrogen fixing bacteria from raw coir pith. African J Biotechnol 11:7063–7071. doi:10.5897/AJB11.2205

    Article  Google Scholar 

  125. 125.

    Vendan RT, Yu YJ, Lee SH, Rhee YH (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J. Microbiol. 48:559–565. doi:10.1007/s12275-010-0082-1

    PubMed  CAS  Article  Google Scholar 

  126. 126.

    Salm JL, Baker MBJ, Beau CJ, Cuce J (2011) Anti-malarial activity exhibited by Florida mangrove endophytes. University of South Florida, Florida

    Google Scholar 

  127. 127.

    Santiago C, Sun L, Munro MHG, Santhanam J (2014) Polyketide and benzopyran compounds of an endophytic fungus isolated from Cinnamomum mollissimum: biological activity and structure. Asian Pac J Trop Biomed 4:627–632. doi:10.12980/APJTB.4.2014APJTB-2014-0030

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  128. 128.

    Hu X, Fan W, Han B, et al (2008) Complete genome sequence of the mosquitocidal bacterium Bacillus sphaericus C3-41 and comparison with those of closely related Bacillus species. J. Bacteriol. 190:2892–2902. doi:10.1128/JB.01652-07

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  129. 129.

    Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266. doi:10.1094/PHYTO.2004.94.11.1259

    PubMed  CAS  Article  Google Scholar 

  130. 130.

    Timmusk S, Wagner EGH (1999) The plant-growth-promoting Rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant-Microbe Interact. 12:951–959. doi:10.1094/MPMI.1999.12.11.951

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgement

We are grateful to the University Kebangsaan University Forest Reserve and Herbarium staff. We thank Muhanna Al-Shabanni, Aishah Ismail, Radhiah Binti Khairon, and Nur Faizah Abu Bakar, for their assistance during sampling. We thank Dr. Binu Tripathi for his contribution on the beta-NTI analysis. This work was funded by the Universiti Kebangsaan Malaysia Research Grant (GUP 2015-042).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Noraziah M. Zin or Jonathan M. Adams.

Electronic supplementary material

ESM 1

(PDF 1191 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haruna, E., Zin, N.M., Kerfahi, D. et al. Extensive Overlap of Tropical Rainforest Bacterial Endophytes between Soil, Plant Parts, and Plant Species. Microb Ecol 75, 88–103 (2018). https://doi.org/10.1007/s00248-017-1002-2

Download citation

Keywords

  • Endophytes
  • Metagenetics
  • Rhizospheric bacteria
  • Stochastic assembly
  • Tropical rainforest plants