Skip to main content
Log in

Effect of Fungal Endophytes on Biomass Yield, Nutritive Value and Accumulation of Minerals in Ornithopus compressus

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Yellow serradella (Ornithopus compressus), a valuable pasture species in Mediterranean areas, presents a high diversity of endophytic mycoflora. In the present work, the hypothesis of a significant effect of fungal endophytic species on the parameters of forage production, nutritive value and mineral status of herbage was tested. O. compressus plants were inoculated with each of seven endophytes (four in 2012/2013 and three in 2013/2014). After inoculation, two experiments (under greenhouse and field conditions) were established. Results evidenced a certain influence of several endophytes on herbage yield, nutritive value and mineral status of O. compressus forage. Byssochlamys spectabilis increased herbage biomass yield by around 42% in the field experiment. Stemphylium sp. improved the nutritive value of forage either by increasing crude protein, digestibility and the concentration of essential minerals (such as B, Mo, P or S) or by reducing the concentration of toxic elements such as Al or Pb. In conclusion, the results presented here provide evidence that plant inoculation with endophytes could be a suitable strategy to increase forage yield and its nutritive value or to deal with potential nutrient deficiencies or potential mineral toxicity in forage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahlholm JU, Helander M, Lehtimäki S, Wäli P, Saikkonen K (2002) Vertically transmitted fungal endophytes: different responses of host-parasite systems to environmental conditions. Oikos 99:173–183

    Article  Google Scholar 

  2. Anonymous 2001. Serradella. Agfact P2.5.23, Second edition. Department of Primary Industries, NSW. www.dpi.nsw.gov.au/agriculture/pastures/pastures-and-rangelands/species-varieties/factsheets/serradella; accessed 15 December 2016.

  3. AOCS (2006) Official methods of analysis. Association of Official Analytical Chemists, Washington, D.C.

    Google Scholar 

  4. Assuero SG, Tognetti JA, Colabelli MR, Agnusdei MG, Petroni EC, Posse MA (2006) Endophyte infection accelerates morpho-physiological responses to water deficit in tall fescue. N Z J Agric Res 49:359–370

    Article  Google Scholar 

  5. Bolland MDA, Gladstones JS (1987) Serradella (Ornithopus spp.) as a pasture legume in Australia. J Aust Inst Agric Sci 53:5–10

    Google Scholar 

  6. Bremner JM (1996) Nitrogen total. In: Sparks DL (ed) Methods of soil analysis, part 3: chemical methods. Soil Science Society of America, Madison, Wisconsin, pp. 1085–1121

    Google Scholar 

  7. Cheng KL, Bray RH (1951) Determination of calcium and magnesium in soil and plant material. Soil Sci 72:449–458

    Article  Google Scholar 

  8. Clarke BB, White JF, Hurley H, Torres MS, Sun S, Huff DR (2006) Endophyte mediated suppression of dollar spot disease in fine fescues. Plant Dis 90:994–998

    Article  Google Scholar 

  9. Debbab A, Aly AH, Edrada-Ebel R, Wray V, Müller WE, Totzke F, Zirrgiebel U, Schächtele C, Kubbutat MH, Lin WH, Mosaddak M, Hakiki A, Proksch P, Ebel R (2009) Bioactive metabolites from the endophytic fungus Stemphylium globuliferum isolated from Mentha pulegium. J Nat Prod 72:626–631

    Article  CAS  PubMed  Google Scholar 

  10. Del Pozo A, Ovalle C (2009) Productivity and persistence of yellow serradella (Ornithopus compressus L.) and biserrula (Biserrula pelecinus L.) in the Mediterranean climate region of central Chile. Chilean J Agric Res 69:340–349

    Article  Google Scholar 

  11. Frame J (1998) Ornithopus compressus L. (Yellow serradella). Grassland species profiles database. FAO. www.fao.org/ag/AGP/AGPC/doc/GBASE/data/pf000489.htm; accessed 15 December 2016.

  12. Frame J, Charlton JFL, Laidlaw AS (1998) Temperate forage legumes. CABI Publishing Series, CAB International, Wallingford

    Google Scholar 

  13. Hesse U, Schöberlein W, Wittenmayer L, Förster K, Diepenbrock W, Merbach W (2005) Influence of water supply and endophyte infection (Neotyphodium spp.) on vegetative and reproductive growth of two Lolium perenne L. genotypes. Eur J Agron 22:45–54

    Article  Google Scholar 

  14. Hodgson S, de Cates C, Hodgson J, Morley NJ, Sutton BC, Gange AC (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4:1199–1208

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lledó S, Rodrigo S, Poblaciones MJ, Santamaria O (2015) Biomass yield, mineral content, and nutritive value of Poa pratensis as affected by non-clavicipitaceous fungal endophytes. Mycol Prog 14:67 online version

    Article  Google Scholar 

  16. Lledó S, Rodrigo S, Poblaciones MJ, Santamaria O (2016a) Biomass yield, nutritive value and accumulation of minerals in Trifolium subterraneum L. as affected by fungal endophytes. Plant Soil 405:197–210

    Article  Google Scholar 

  17. Lledó S, Santamaria O, Rodrigo S, Poblaciones MJ (2016b) Endophytic mycobiota associated with Trifolium subterraneum growing under semiarid conditions. Ann Appl Biol 168:243–254

    Article  Google Scholar 

  18. Malinowski DP, Belesky DP (1999) Tall fescue aluminum tolerance is affected by Neotyphodium coenophialum endophyte. J Plant Nutr 22:1335–1349

    Article  Google Scholar 

  19. Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  20. Mioso R, Toledo Marante FJ, Herrera Bravo de Laguna I (2015) The chemical diversity of the ascomycete fungus, Paecilomyces variotii. Appl Biochem Biotechnol 177:781–791

    Article  CAS  PubMed  Google Scholar 

  21. Nakajima M, Itoi K, Takamatsu Y, Sato S, Furukawa Y, Furuya K, Honma T, Kadotani J, Kozasa M, Haneishi T (1991) Cornexistin: a new fungal metabolite with herbicidal activity. J Antibiot 44:1065–1072

    Article  CAS  PubMed  Google Scholar 

  22. Newman JA, Abner ML, Dado RG, Gibson DJ, Brooking A, Parsons AJ (2003) Effects of elevated CO2, nitrogen and fungal endophyte-infection on tall fescue: growth, photosynthesis, chemical composition and digestibility. Glob Chang Biol 9:425–437

    Article  Google Scholar 

  23. Nichols PGH, Revell CK, Humphries AW, Howie JH, Hall EJ, Sandral GA, Ghamkhar K, Harris CA (2012) Temperate pasture legumes in Australia—their history, current use, and future prospects. Crop Pasture Sci 63:691–725

    Article  Google Scholar 

  24. NRC (National Research Council) (2005) Mineral tolerance of animals, 2nd edn. National Academy of Sciences, Washington, DC

    Google Scholar 

  25. Oesterheld M, Loreti J, Semmartin M, Sala OE (2001) Inter-annual variation in primary production of a semi-arid grassland related to previous-year production. J Veg Sci 12:137–142

    Article  Google Scholar 

  26. Oliveira Silva MR, Kawai K, Hosoe T, Campos Takaki GM, Buarque Gusmão N, Fukushima K (2013) Viriditoxin, an antibacterial substance produced by mangrove endophytic fungus Paecilomyces variotii. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education, vol 2. Formatex Research Center, Badajoz, pp. 1406–1411

    Google Scholar 

  27. Olsen SR, Cole CV, Watanable FS, Dean LA (1954) Estimation of available phosphorus in soil by extraction with sodium bicarbonate. U.S. Department of Agricultural Circular 939, Whashington

    Google Scholar 

  28. Ovalle C, Arredondo S, Romero O (2006) Serradela amarilla (Ornithopus compressus) y Serradela rosada (O. sativus): dos nuevas especies de leguminosas forrajeras anuales para la Zona Mediterránea de Chile. Agricultura Técnica 66:196–209

    Article  Google Scholar 

  29. Sandoval MA, Celis JE, Morales P (2011) Structural remediation of an alfisol by means of sewage sludge amendments in association with yellow serradela (Ornithopus compressus L.) J Soil Sci Plant Nutr 11:68–78

    Article  Google Scholar 

  30. Santamaría O, Rodrigo S, Poblaciones MJ, Olea L (2014) Fertilizer application (P, K, S, Ca and Mg) on pasture in calcareous dehesas: effects on herbage yield, botanical composition and nutritive value. Plant Soil Environ 60:303–308

    Article  Google Scholar 

  31. Santamaría O, Smith DR, Stanosz GR (2012) Interaction between Diplodia pinea or Diplodia scrobiculata and fungal endophytes isolated from pine shoots. Can J For Res 42:1819–1826

    Article  Google Scholar 

  32. Spiering MJ, Greer DH, Schmid J (2006) Effects of the fungal endophyte, Neotyphodium lolii, on net photosynthesis and growth rates of perennial ryegrass (Lolium perenne) are independent of In Planta endophyte concentration. Ann Bot 98:379–387

    Article  PubMed  PubMed Central  Google Scholar 

  33. Suttle NF (2010) Mineral nutrition of livestock, 4th edn. CABI, Wallingford, Oxfordhire

    Book  Google Scholar 

  34. Vázquez de Aldana BR, García-Ciudad A, Pérez-Corona ME, García-Criado B (2000) Nutritional quality of semi-arid grassland in western Spain over a 10-year period: changes in chemical composition of grasses, legumes and forbs. Grass Forage Sci 55:209–220

    Article  Google Scholar 

  35. Yun HY, Lee YW, Kim YH (2013) Stem canker of giant dogwood (Cornus controversa) caused by Fusarium lateritium in Korea. Plant Dis 97:1378

    Article  Google Scholar 

  36. Zabalgogeazcoa I (2008) Review. Fungal endophytes and their interaction with plant pathogens. Span J Agric Res 6:138–146

    Article  Google Scholar 

  37. Zabalgogeazcoa I, García-Ciudad A, Vázquez De Aldana BR, García-Criado B (2006) Effects of the infection by the fungal endophyte Epichloë festucae in the growth and nutrient content of Festuca rubra. Eur J Agron 24:374–384

    Article  CAS  Google Scholar 

  38. Zhang P, Mandi A, Li XM, Du FY, Wang JN, Li X, Kurtan T, Wang BG (2014) Varioxepine A, a 3H-oxepine-containing alkaloid with a new oxa-cage from the marine algal-derived endophytic fungus Paecilomyces variotii. Org Lett 16:4834–4837

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Project AGL2011-27454, granted by the Ministry of Economy and Competitiveness of Spain (the former Ministry of Science and Innovation) and by the European Regional Development Fund (ERDF). We would like to thank Teodoro García-White, Natalia Hernández and Pablo Romero for their invaluable help with the technical work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Santamaria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santamaria, O., Lledó, S., Rodrigo, S. et al. Effect of Fungal Endophytes on Biomass Yield, Nutritive Value and Accumulation of Minerals in Ornithopus compressus . Microb Ecol 74, 841–852 (2017). https://doi.org/10.1007/s00248-017-1001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1001-3

Keywords

Navigation