Advertisement

Microbial Ecology

, Volume 76, Issue 1, pp 37–48 | Cite as

Case Study: Microbial Ecology and Forensics of Chinese Drywall-Elemental Sulfur Disproportionation as Primary Generator of Hydrogen Sulfide

  • Francisco A. Tomei TorresEmail author
Minireviews

Abstract

Drywall manufactured in China released foul odors attributed to volatile sulfur compounds. These included hydrogen sulfide, methyl mercaptan, and sulfur dioxide. Given that calcium sulfate is the main component of drywall, one would suspect bacterial reduction of sulfate to sulfide as the primary culprit. However, when the forensics, i.e., the microbial and chemical signatures left in the drywall, are studied, the evidence suggests that, rather than dissimilatory sulfate reduction, disproportionation of elemental sulfur to hydrogen sulfide and sulfate was actually the primary cause of the malodors. Forensic evidence suggests that the transformation of elemental sulfur went through several abiological and microbial stages: (1) partial volatilization of elemental sulfur during the manufacture of plaster of Paris, (2) partial abiotic disproportionation of elemental sulfur to sulfide and thiosulfate during the manufacture of drywall, (3) microbial disproportionation of elemental sulfur to sulfide and sulfate resulting in neutralization of all alkalinity, and acidification below pH 4, (4) acidophilic microbial disproportionation of elemental sulfur to sulfide and sulfuric acid, and (5) hydrogen sulfide volatilization, coating of copper fixtures resulting in corrosion, and oxidation to sulfur dioxide.

Keywords

Drywall Malodors Sulfur disproportionation Volatile sulfur substances 

Notes

Compliance with Ethical Standards

Disclaimer

Francisco A. Tomei Torres, Ph.D., is an Environmental Health Scientist at the Agency for Toxic Substances and Disease Registry (ATSDR), but this publication is an outside activity that only reflects Dr. Tomei Torres’ views. The findings and conclusions in this report are solely those of the author. An outline related to issues discussed on this paper appeared in Appendix A of the Addendum to the Toxicological Profile for Methyl Mercaptan [73].

References

  1. 1.
    Allen JG, MacIntosh DL, Saltzman LE, Baker BJ, Matheson JM, Recht JR, Minegishi T, Fragala MA, Myatt TA, Spengler JD, Stewart JH, McCarthy JF (2012) Elevated corrosion rates and hydrogen sulfide in homes with ‘Chinese drywall’. Sci Total Environ 426:113–119. doi: 10.1016/j.scitotenv.2012.01.067 CrossRefPubMedGoogle Scholar
  2. 2.
    Petrisor IG, Kanner A (2010) Chinese drywall—environmental forensic opportunities. Environ Forensic 11:6–16. doi: 10.1080/15275920903526445 CrossRefGoogle Scholar
  3. 3.
    Burdack-Freitag A, Mayer F, Breuer K (2009) Identification of odor-active organic sulfur compounds in gypsum products. CLEAN – Soil, Air, Water 37:459–465. doi: 10.1002/clen.200800224
  4. 4.
    ATSDR (2014) Health consultation: possible health implications from exposure to sulfur gases emitted from Chinese-manufactured drywall. Agency for Toxic Substances and Disease Registry, Atlanta, GA https://tinyurl.com/zqp6nvq Google Scholar
  5. 5.
    Corkery M (2009) Chinese drywall cited in building woes. Wall Street J, https://tinyurl.com/hbhghve
  6. 6.
    Wayne L (2009) Chinese drywall found to differ chemically. NY Times, https://tinyurl.com/yff4otc
  7. 7.
    Padgett T (2009) Is drywall the next Chinese import scandal? Time, https://tinyurl.com/zqxtrf8
  8. 8.
    Wyckoff JS, Martin R (2009) Chinese drywall liability. Environ Claim J21:272–284. doi: 10.1080/10406020903361514
  9. 9.
    IUPAC (1997) Compendium of chemical terminology. In: McNaught AD, Wilkinson A (eds) Gold Book, 2nd edn. Blackwell Scientific Publications, Oxford. doi: 10.1351/goldbook.D01799 CrossRefGoogle Scholar
  10. 10.
    Kontogeorgos DA, Founti MA (2012) Gypsum board reaction kinetics at elevated temperatures. Thermochim Acta 529:6–13. doi: 10.1016/j.tca.2011.11.014 CrossRefGoogle Scholar
  11. 11.
    Saltzman L (2010) Draft report on preliminary microbiological assessment of Chinese drywall. U.S. Consumer Product Safety Commission, EH&E Report #16512. https://tinyurl.com/zeeeeqn
  12. 12.
    DeMott R, Alessandro M, Hayes H, Freeman G, Gauthier T (2009) Elemental sulfur and trace metal content in Chinese and domestic brands of gypsum wallboard. Technical Symposium on Corrosive Imported Drywall. William W. “Bill” Hinkley Center for Solid and Hazardous Waste, Gainesville, FL, Tampa, FL, https://tinyurl.com/zv87ro8
  13. 13.
    Kominsky JR (2013) Relationship between strontium, orthorhombic cyclooctasulfur (S8), and reduced sulfur gases in drywall. A&WMA’s 106th Annual Conference & Exhibition: Towards Sustainability, Hyatt Regency Chicago, Chicago, Illinois, pp. Extended Abstract #12394, https://tinyurl.com/ztnn44m
  14. 14.
    Rosen G, Zippi P (2009) Analysis of physical differences in American and Chinese drywall and applicability to drywall testing. Technical Symposium on Corrosive Imported Drywall. William W. “Bill” Hinkley Center for Solid and Hazardous Waste, Gainesville, FL, Tampa. FL, https://tinyurl.com/jzuz8vv
  15. 15.
    Reidy L, Williams R, Bussan D, Brewer S, Cizdziel JV (2014) Elemental fingerprinting of gypsum drywall using sector field ICP-MS and multivariate statistics. Int J Environ Anal Chem 94:1273–1287. doi: 10.1080/03067319.2014.954561 CrossRefGoogle Scholar
  16. 16.
    Steiner K (2011) On-site X-ray fluorescence testing for presence of corrosive drywall. J Mater Civ Eng 23:1050–1056. doi: 10.1061/(ASCE)MT.1943-5533.0000273 CrossRefGoogle Scholar
  17. 17.
    Hirsch J, Lowry SR, Dowd M (2010) X-ray fluorescence and FT-IR identification of strontium and carbonate in domestic and imported gypsum drywall. Spectroscopy 25:30–37 https://tinyurl.com/zs4zwcb Google Scholar
  18. 18.
    Halford B (2009) Wallboard woes: odors and corrosion raise concern over drywall imported from China. Sci Technol 87:50–51. doi: 10.1021/cen-v087n018.p050
  19. 19.
    Curtis ME, Jones PR, Sparkman OD, Cody RB (2009) Determination of the presence or absence of sulfur materials in drywall using direct analysis in real time in conjunction with an accurate-mass time-of-flight mass spectrometer. J Am Soc Mass Spectrom 20:2082–2086. doi: 10.1016/j.jasms.2009.07.012 CrossRefPubMedGoogle Scholar
  20. 20.
    West WA, Menzies AWC (1928) The vapor pressures of sulphur between 100° and 550° with related thermal data. J Phys Chem 33:1880–1892. doi: 10.1021/j150306a002 CrossRefGoogle Scholar
  21. 21.
    Giggenbach WF (1974) Equilibriums involving polysulfide ions in aqueous sulfide solutions up to 240o. Inorg Chem 13:1724–1730. doi: 10.1021/ic50137a038 CrossRefGoogle Scholar
  22. 22.
    Giggenbach WF (1974) Kinetics of the polysulfide-thiosulfate disproportionation up to 2400. Inorg Chem 13:1730–1733. doi: 10.1021/ic50137a039 CrossRefGoogle Scholar
  23. 23.
    Belkin S, Wirsen CO, Jannasch HW (1985) Biological and abiological sulfur reduction at high temperatures. Appl Environ Microbiol 49:1057–1061 https://tinyurl.com/y9v9on6p
  24. 24.
    Muehlberg PE, Shepherd BP, Parsons T (1977) The gypsum and wallboard industry. Chapter 17. Industrial Process Profiles for Environmental Use. Environmental Protection Agency Office of Research and Development. https://tinyurl.com/jh3z8z8
  25. 25.
    Kontogeorgos D, Mandilaras I, Founti M (2011) Scrutinizing gypsum board thermal performance at dehydration temperatures. J Fire Sci 29:111–130. doi: 10.1177/0734904110381731
  26. 26.
    Chen KY, Morris JC (1972) Kinetics of oxidation of aqueous sulfide by oxygen. Environ Sci Technol 6:529–537. doi: 10.1021/es60065a008
  27. 27.
    Hoffmann MR, Lim BC (1979) Kinetics and mechanism of the oxidation of sulfide by oxygen: catalysis by homogeneous metal-phthalocyanine complexes. Environ Sci Technol 13:1406–1414. doi: 10.1021/es60159a014 CrossRefGoogle Scholar
  28. 28.
    Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights. Sediment Geol 140:143–175. doi: 10.1016/S0037-0738(00)00176-7 CrossRefGoogle Scholar
  29. 29.
    White JFM, White AH (1936) Manufacture of sodium sulfide: reduction of sodium sulfate to sodium sulfide at temperatures below 800°C. Ind Eng Chem 28:244–246. doi: 10.1021/ie50314a025 CrossRefGoogle Scholar
  30. 30.
    Naqvi M, Yan J, Dahlquist E (2010) Black liquor gasification integrated in pulp and paper mills: a critical review. Bioresour Technol 101:8001–8015. doi: 10.1016/j.biortech.2010.05.013 CrossRefPubMedGoogle Scholar
  31. 31.
    Goldstein TP, Aizenshtat Z (1994) Thermochemical sulfate reduction a review. J Therm Anal 42:241–290. doi: 10.1007/bf02547004 CrossRefGoogle Scholar
  32. 32.
    Babich M, Danello MA, Hatlelid K, Matheson J, Saltzman L, Thomas T (2010) CPSC staff preliminary evaluation of drywall chamber test results: reactive sulfur gases. https://tinyurl.com/ztrmt4q
  33. 33.
    Yang K, Xu Q, Townsend TG, Chadik P, Bitton G, Booth M (2006) Hydrogen sulfide generation in simulated construction and demolition debris landfills: impact of waste composition. J Air Waste Manage Assoc 56:1130–1138. doi: 10.1080/10473289.2006.10464544 CrossRefGoogle Scholar
  34. 34.
    Hardy J, Hamilton WA (1981) The oxygen tolerance of sulfate-reducing bacteria isolated from North Sea waters. Curr Microbiol 6:259–262. doi: 10.1007/BF01566873 CrossRefGoogle Scholar
  35. 35.
    Marschall C, Frenzel P, Cypionka H (1993) Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch Microbiol 159:168–173. doi: 10.1007/BF00250278 CrossRefGoogle Scholar
  36. 36.
    Lobo SA, Melo AM, Carita JN, Teixeira M, Saraiva LM (2007) The anaerobe Desulfovibrio desulfuricans ATCC 27774 grows at nearly atmospheric oxygen levels. FEBS Lett 581:433–436. doi: 10.1016/j.febslet.2006.12.053 CrossRefPubMedGoogle Scholar
  37. 37.
    Cypionka H, Widdel F, Pfennig N (1985) Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol Lett 31:39–45. doi: 10.1111/j.1574-6968.1985.tb01129.x CrossRefGoogle Scholar
  38. 38.
    Barton LL, Fardeau M-L, Fauque GD (2014) Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation. In: Kroneck, PMH, Torres, MES (eds.) The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Springer Netherlands, pp. 237–277. doi: 10.1007/978-94-017-9269-1_10
  39. 39.
    Hooper D, Shane J, Straus D, Bolton V, Kilburn K, Guilford F (2009) Isolation of sulfur reducing and oxidizing bacteria found in dry wall. Technical Symposium on Corrosive Imported Drywall. William W. “Bill” Hinkley Center for Solid and Hazardous Waste, Gainesville, FL, Tampa. FL, https://tinyurl.com/zhj5keu
  40. 40.
    Takahashi Y, Suto K, Inoue C (2010) Polysulfide reduction by Clostridium relatives isolated from sulfate-reducing enrichment cultures. J Biosci Bioeng 109:372–380. doi: 10.1016/j.jbiosc.2009.09.051 CrossRefPubMedGoogle Scholar
  41. 41.
    Jackson BE, McInerney MJ (2000) Thiosulfate disproportionation by Desulfotomaculum thermobenzoicum. Appl Environ Microbiol 66:3650–3653. doi: 10.1128/aem.66.8.3650-3653.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Laishley EJ, Krouse HR (1978) Stable isotope fractionation by Clostridium pasteurianum. 2. Regulation of sulfite reductases by sulfur amino acids and their influence on sulfur isotope fractionation during SO3 2− and SO4 2− reduction. Can J Microbiol 24:716–724. doi: 10.1139/m78-120 CrossRefPubMedGoogle Scholar
  43. 43.
    Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180 https://tinyurl.com/zcycv5c PubMedPubMedCentralGoogle Scholar
  44. 44.
    Thamdrup B, Finster K, Hansen JW, Bak F (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59:101–108 https://tinyurl.com/hemge35 PubMedPubMedCentralGoogle Scholar
  45. 45.
    Finster K, Liesack W, Thamdrup B (1998) Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microbiol 64:119–125 http://bit.ly/2mpmla0 PubMedPubMedCentralGoogle Scholar
  46. 46.
    Poser A, Lohmayer R, Vogt C, Knoeller K, Planer-Friedrich B, Sorokin D, Richnow H-H, Finster K (2013) Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes. Extremophiles 17:1003–1012. doi: 10.1007/s00792-013-0582-0 CrossRefPubMedGoogle Scholar
  47. 47.
    Hooper DG, Shane J, Straus DC, Kilburn KH, Bolton V, Sutton JS, Guilford FT (2010) Isolation of sulfur reducing and oxidizing bacteria found in contaminated drywall. Int J Mol Sci 11:647–655. doi: 10.3390/ijms11020647 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Osorio H, Mangold S, Denis Y, Ñancucheo I, Esparza M, Johnson DB, Bonnefoy V, Dopson M, Holmes DS (2013) Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans. Appl Environ Microbiol 79:2172–2181. doi: 10.1128/AEM.03057-12 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Harrison AP, Norris PR (1985) Leptospirillum ferrooxidans and similar bacteria: some characteristics and genomic diversity. FEMS Microbiol Lett 30:99–102. doi: 10.1111/j.1574-6968.1985.tb00992.x CrossRefGoogle Scholar
  50. 50.
    Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50 Pt 2:511–516. doi: 10.1099/00207713-50-2-511 CrossRefPubMedGoogle Scholar
  51. 51.
    Norris PR, Clark DA, Owen JP, Waterhouse S (1996) Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142:775–783. doi: 10.1099/00221287-142-4-775 CrossRefPubMedGoogle Scholar
  52. 52.
    Klemps R, Cypionka H, Widdel F, Pfennig N (1985) Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch Microbiol 143:203–208. doi: 10.1007/BF00411048 CrossRefGoogle Scholar
  53. 53.
    Coleman GS (1960) A sulphate-reducing bacterium from the sheep rumen. J Gen Microbiol 22:423–436. doi: 10.1099/00221287-22-2-423 CrossRefPubMedGoogle Scholar
  54. 54.
    Tao H, Dongwei L (2014) Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy—a presentation. Biotechnol Rep 4:107–119. doi: 10.1016/j.btre.2014.09.003
  55. 55.
    Druschel G, Borda M (2006) Comment on “pyrite dissolution in acidic media” by M. Descostes, P. Vitorge, and C. Beaucaire. Geochim Cosmochim Acta 70:5246–5250. doi: 10.1016/j.gca.2005.07.023 CrossRefGoogle Scholar
  56. 56.
    Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167:1121–1123. doi: 10.1126/science.167.3921.1121 CrossRefPubMedGoogle Scholar
  57. 57.
    Temple KL, Delchamps EW (1953) Autotrophic bacteria and the formation of acid in bituminous coal mines. Appl Microbiol 1:255–258 https://tinyurl.com/zwuq8fq PubMedPubMedCentralGoogle Scholar
  58. 58.
    Silverman MP (1967) Mechanism of bacterial pyrite oxidation. J Bacteriol 94:1046–1051 https://tinyurl.com/zf5u2ab PubMedPubMedCentralGoogle Scholar
  59. 59.
    Kelly DP, Tuovinen O (1972) Recommendation that the names Ferrobacillus ferrooxidans Leathen and Braley and Ferrobacillus sulfooxidans Kinsel be recognized as synonyms of Thiobacillus ferrooxidans Temple and Colmer. Int J Syst Bacteriol 22:170–172. doi: 10.1099/00207713-22-3-170 CrossRefGoogle Scholar
  60. 60.
    Leathen WW, Kinsel NA, Braley SA (1956) Ferrobacillus ferrooxidans: a chemosynthetic autotrophic bacterium. J Bacteriol 72:700–704 https://tinyurl.com/gqymh9x PubMedPubMedCentralGoogle Scholar
  61. 61.
    Ohmura N, Sasaki K, Matsumoto N, Saiki H (2002) Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. J Bacteriol 184:2081–2087. doi: 10.1128/jb.184.8.2081-2087.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Brock TD, Gustafson J (1976) Ferric iron reduction by sulfur-and iron-oxidizing bacteria. Appl Environ Microbiol 32:567–571 https://tinyurl.com/j6voyse PubMedPubMedCentralGoogle Scholar
  63. 63.
    Drobner E, Huber H, Stetter KO (1990) Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl Environ Microbiol 56:2922–2923 https://tinyurl.com/jq4jbxc PubMedPubMedCentralGoogle Scholar
  64. 64.
    Pronk JT, de Bruyn JC, Bos P, Kuenen JG (1992) Anaerobic growth of Thiobacillus ferrooxidans. Appl Environ Microbiol 58:2227–2230 https://tinyurl.com/hes8hsb PubMedPubMedCentralGoogle Scholar
  65. 65.
    Pronk JT, Liem K, Bos P, Kuenen JG (1991) Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans. Appl Environ Microbiol 57:2063–2068 https://tinyurl.com/hucn3rb PubMedPubMedCentralGoogle Scholar
  66. 66.
    Rawlings D, Tributsch H, Hansford G (1999) Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145:5–13. doi: 10.1099/13500872-145-1-5 CrossRefPubMedGoogle Scholar
  67. 67.
    Thode-Andersen S, Jørgensen BB (1989) Sulfate reduction and the formation of 35S-labeled FeS, FeS2, and S0 in coastal marine sediments. Limnol Oceanogr 34:793–806. doi: 10.4319/lo.1989.34.5.0793 CrossRefGoogle Scholar
  68. 68.
    Rickard D (1997) Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: the rate equation. Geochim Cosmochim Acta 61:115–134. doi: 10.1016/S0016-7037(96)00321-3 CrossRefGoogle Scholar
  69. 69.
    Salas BV, Badilla GL, Diaz JdDO, Gaynor JT, Osuna LV, Stoycheva M, Wiener MS, Beltran MC, Zlatev R (2012) H2S pollution and its effect on corrosion of electronic components. In: Badilla GL, Valdez B, Schorr M (eds) Air quality - new perspective. INTECH Open Access Publisher, p 264–286. doi: 10.5772/39247
  70. 70.
    Lomans BP, Leijdekkers P, Wesselink J-J, Bakkes P, Pol A, van der Drift C, Op den Camp HJM (2001) Obligate sulfide-dependent degradation of methoxylated aromatic compounds and formation of methanethiol and dimethyl sulfide by a freshwater sediment isolate, Parasporobacterium paucivorans gen. nov., sp. nov. Appl Environ Microbiol 67:4017–4023. doi: 10.1128/aem.67.9.4017-4023.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Drotar A, Burton Jr GA, Tavernier JE, Fall R (1987) Widespread occurrence of bacterial thiol methyltransferases and the biogenic emission of methylated sulfur gases. Appl Environ Microbiol 53:1626–1631 https://tinyurl.com/jc4mfkv PubMedPubMedCentralGoogle Scholar
  72. 72.
    Nedjma M, Hoffmann N (1996) Hydrogen sulfide reactivity with thiols in the presence of copper(II) in hydroalcoholic solutions or cognac brandies: formation of symmetrical and unsymmetrical dialkyl trisulfides. J Agric Food Chem 44:3935–3938. doi: 10.1021/jf9602582 CrossRefGoogle Scholar
  73. 73.
    Tomei-Torres FA (2014) Addendum to the toxicological profile for methyl mercaptan. Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services. http://tinyurl.com/gn3kp5v

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.DaculaUSA

Personalised recommendations