Skip to main content
Log in

Temporal Variations of Microbiota Associated with the Immature Stages of Two Florida Culex Mosquito Vectors

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbiota associated with mosquito vector populations impact several traits of mosquitoes, including survival, reproduction, control, and immunity against pathogens. The influence of seasonal variations and mosquito species on mosquito gut microbiota is poorly understood. We sought to determine whether the mosquito microbiota associated with immature stages of two congeners (Culex coronator and Culex nigripalpus) differ temporally and between the two species. Using high throughput 16S rRNA gene sequence analysis, we characterized bacterial and archaeal communities found in the immature stages of the two Culex mosquito species sampled over three seasons to compare the diversity of bacteria between the two species. Beta diversity analyses of the larval microbiota sequences revealed that the two Culex species differed significantly, both temporally within each species and between the two species. Bacteria in Cx. coronator larvae were dominated by Alphaproteobacteria, mainly associated with Roseoccocus and unidentified species of Rhizobiales, and two unidentified species of Cyanobacteria. In contrast, Cx. nigripalpus was dominated by Thorsellia anophelis (Gammaproteobacteria), Clostridium, an unidentified species of Ruminococcacae (Clostridiales), and additional unidentified species associated with Erysipelotrichaceae (Erysipelotrichales), Bacteroidales, and Mollicutes. Results of our study revealed both seasonal and interspecies differences in bacterial community composition associated with the immature stages of Cx. coronator and Cx. nigripalpus vector populations in Florida. These results have important implications for our understanding of the underlying factors of variations in disease transmission among seasons, susceptibility to various pesticides, and other biotic factors, including the role of the microbiota on the spread of invasive species. In addition, our results suggest close associations of certain bacteria species with each of the two Culex species that will be further targeted for their potential in the development of microbial-based control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Coon KL, Vogel KJ, Brown MR, Strand MR (2014) Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 23(11):2727–2739. doi:10.1111/mec.12771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mitraka E, Stathopoulos S, Siden-Kiamos I, Christophides GK, Louis C (2013) Asaia accelerates larval development of Anopheles gambiae. Pathog Glob Health 107(6):305–311. doi:10.1179/2047773213Y.0000000106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Diaz-Nieto LM, DA C, Perotti MA, Beron CM (2016) Culex pipiens development is greatly influenced by native bacteria and exogenous yeast. PLoS One 11(4):e0153133. doi:10.1371/journal.pone.0153133

    Article  PubMed  PubMed Central  Google Scholar 

  4. Merritt RW, Dadd RH, Walker ED (1992) Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu. Rev. Entomol. 37(1):349–374. doi:10.1146/annurev.en.37.010192.002025

    Article  CAS  PubMed  Google Scholar 

  5. Glaser RL, Meola MA (2010) The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS One 5(8):e11977. doi:10.1371/journal.pone.0011977

    Article  PubMed  PubMed Central  Google Scholar 

  6. Finney CA, Kamhawi S, Wasmuth JD (2015) Does the arthropod microbiota impact the establishment of vector-borne diseases in mammalian hosts? PLoS Pathog. 11(4):e1004646. doi:10.1371/journal.ppat.1004646

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zink SD, Van Slyke GA, Palumbo MJ, Kramer LD, Ciota AT (2015) Exposure to West Nile virus increases bacterial diversity and immune gene expression in Culex pipiens. Viruses 7(10):5619–5631. doi:10.3390/v7102886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dennison NJ, Jupatanakul N, Dimopoulos G (2014) The mosquito microbiota influences vector competence for human pathogens. Curr Opin Insect Sci 3:6–13. doi:10.1016/j.cois.2014.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brownlie JC, Johnson KN (2009) Symbiont-mediated protection in insect hosts. Trends Microbiol. 17(8):348–354. doi:10.1016/j.tim.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  10. Berticat C, Rousset F, Raymond M, Berthomieu A, Weill M (2002) High Wolbachia density in insecticide-resistant mosquitoes. Proc. Biol. Sci. 269:1413–1416. doi:10.1098/rspb.2002.2022

    Article  PubMed  PubMed Central  Google Scholar 

  11. Duron O, Labbé P, Berticat C, Rousset F, Guillot S, Raymond M, Weill M (2006) High Wolbachia density correlates with cost of infection for insecticide resistant Culex pipiens mosquitoes. Evolution 60:303–314. doi:10.1554/05-340.1

    Article  CAS  PubMed  Google Scholar 

  12. Patil CD, Borase HP, Salunke BK, Patil SV (2013) Alteration in Bacillus thuringiensis toxicity by curing gut flora: novel approach for mosquito resistance management. Parasit Res 112(9):3283–3288. doi:10.1007/s00436-013-3507-z

    Article  Google Scholar 

  13. Feldhaar H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 36(5):533–543. doi:10.1111/j.1365-2311.2011.01318.x

    Article  Google Scholar 

  14. Coon KL, Brown MR, Strand MR (2016) Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasit. Vectors 9(1):375. doi:10.1186/s13071-016-1660-9

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pumpuni CB, DeMaio J, Kent M, Davis JR, Beier JC (1996) Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. Am.J.Trop. Med. Hyg. 54(2):214–218

    Article  CAS  PubMed  Google Scholar 

  16. DeMaio J, Pumpuni CB, Kent M, Beier JC (1996) The midgut bacterial flora of wild Aedes triseriatus, Culex pipiens, and Psorophora columbiae mosquitoes. Am.J.Trop. Med. Hyg. 54(2):219–223

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Gilbreath T, Kukutla P, Yan G, Xu J (2011) Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 6 (9). doi:10.1371/journal.pone.0024767

  18. Duguma D, Hall MW, Rugman-Jones P, Stouthamer R, Terenius O, Neufeld JD, Walton WE (2015) Developmental succession of the microbiome of Culex mosquitoes. BMC Microbiol. 15:140. doi:10.1186/s12866-015-0475-8

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar RK (2009) Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi—an Asian malarial vector. BMC Microbiol. 9:96. doi:10.1186/1471-2180-9-96

    Article  PubMed  PubMed Central  Google Scholar 

  20. Moll RM, Romoser WS, Modrzakowski MC, Moncayo AC, Lerdthusnee K (2001) Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J. Med. Entomol. 38(1):29–32. doi:10.1603/0022-2585-38.1.29

    Article  CAS  PubMed  Google Scholar 

  21. Chavshin AR, Oshaghi MA, Vatandoost H, Yakhchali B, Zarenejad F, Terenius O (2015) Malpighian tubules are important determinants of Pseudomonas transstadial transmission and longtime persistence in Anopheles stephensi. Parasit. Vectors 8:36. doi:10.1186/s13071-015-0635-6

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gimonneau G, Tchioffo MT, Abate L, Boissiere A, Awono-Ambene PH, Nsango SE, Christen R, Morlais I (2014) Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. Infect. Genet. Evol. 28:715–724. doi:10.1016/j.meegid.2014.09.029

    Article  PubMed  Google Scholar 

  23. Wilke AB, Marrelli MT (2015) Paratransgenesis: a promising new strategy for mosquito vector control. Parasit. Vectors 8:342. doi:10.1186/s13071-015-0959-2

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vitek CJ, Richards SL, Mores CN, Day JF, Lord CC (2008) Arbovirus transmission by Culex nigripalpus in Florida, 2005. J. Med. Entomol. 45(3):483–493. doi:10.1603/0022-2585(2008)45[483:ATBCNI]2.0.CO;2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Day JF, Stark LM (2000) Frequency of Saint Louis encephalitis virus in humans from Florida, USA: 1990-1999. J. Med. Entomol. 37(4):626–633. doi:10.1603/0022-2585-37.4.626

    Article  CAS  PubMed  Google Scholar 

  26. Rutledge CR, Day JF, Lord CC, Stark LM, Tabachnick WJ (2003) West Nile virus infection rates in Culex nigripalpus (Diptera: Culicidae) do not reflect transmission rates in Florida. J. Med. Entomol. 40(3):253–258. doi:10.1603/0022-2585-40.3.253

    Article  PubMed  Google Scholar 

  27. Duguma D, Hall MW, Smartt CT, Neufeld JD (2017) Effects of organic amendments on microbiota associated with the Culex nigripalpus mosquito vector of the Saint Louis encephalitis and West Nile viruses. mSphere 2 (1). doi:10.1128/mSphere.00387-16

  28. Day JF, Curtis GA (1994) When it rains, they soar—and that makes Culex nigripalpus a dangerous mosquito. Am. Entomol. 40(3):162–167. doi:10.1093/ae/40.3.162

    Article  Google Scholar 

  29. O'Meara GF, Cutwa-Francis M, Rey JR (2010) Seasonal variation in the abundance of Culex nigripalpus and Culex quinquefasciatus in wastewater ponds at two Florida dairies. J. Am. Mosq. Control Assoc. 26(2):160–166. doi:10.2987/09-5971.1

    Article  PubMed  Google Scholar 

  30. Rey JR, O'Meara GF, O'Connell SM, Cutwa-Francis MM (2006) Factors affecting mosquito production from stormwater drains and catch basins in two Florida cities. J Vector Ecol. 31(2):334–343. doi:10.3376/1081-1710(2006)31[334:FAMPFS]2.0.CO;2

    Article  PubMed  Google Scholar 

  31. O'Meara GF, Vose FE, Carlson DB (1989) Environmental factors influencing oviposition by Culex (Culex) (Diptera: Culicidae) in two types of traps. J. Med. Entomol. 26:528–534. doi:10.1093/jmedent/26.6.528

    Article  PubMed  Google Scholar 

  32. Demari-Silva B, Suesdek L, Sallum MAM, Marrelli MT (2014) Wing geometry of Culex coronator (Diptera: Culicidae) from South and Southeast Brazil. Parasit. Vectors 7(1):1–9. doi:10.1186/1756-3305-7-174

    Article  Google Scholar 

  33. Smith JP, Walsh JD, Cope EH, Tennant Jr RA, Kozak 3rd JA, Darsie Jr RF (2006) Culex coronator Dyar and Knab: a new Florida species record. J. Am. Mosq. Control Assoc. 22(2):330–332. doi:10.2987/8756-971X(2006)22[330:CCDAKA]2.0.CO;2

    Article  PubMed  Google Scholar 

  34. Darsie RF, Ward RA (2005) Identification and geographical distribution of the mosquitos of North America, North of Mexico. University Press of Florida, Gainsville

    Google Scholar 

  35. Yee D, Skiff J (2014) Interspecific competition of a new invasive mosquito, Culex coronator, and two container mosquitoes, Aedes albopictus and Cx. quinquefasciatus (Diptera: Culicidae), across different detritus environments. J. Med. Entomol. 51(1):89–96. doi:10.1603/ME13182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Connelly CR, Alto BW, O'Meara GF (2016) The spread of Culex coronator (Diptera: Culicidae) throughout Florida. J Vector Ecol. 41(1):195–199. doi:10.1111/jvec.12213

    Article  PubMed  Google Scholar 

  37. Alto BW, Connelly CR, O'Meara GF, Hickman D, Karr N (2014) Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile virus. Vector Borne Zoonotic Dis 14(8):606–614

    Article  PubMed  PubMed Central  Google Scholar 

  38. Turell MJ, O'Guinn ML, Jones JW, Sardelis MR, Dohm DJ, Watts DM, Fernandez R, Travassos da Rosa A, Guzman H, Tesh R, Rossi CA, Ludwig V, Mangiafico JA, Kondig J, Wasieloski Jr LP, Pecor J, Zyzak M, Schoeler G, Mores CN, Calampa C, Lee JS, Klein TA (2005) Isolation of viruses from mosquitoes (Diptera: Culicidae) collected in the Amazon Basin region of Peru. J. Med. Entomol. 42(5):891–898. doi:10.1603/0022-2585(2005)042[0891:IOVFMD]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  39. Goddard J, Varnado WC, Harrison BA (2006) Notes on the ecology of Culex coronator Dyar and Knab, in Mississippi. J. Am. Mosq. Control Assoc. 22(4):622–625. doi:10.2987/8756-971X(2006)22[622:NOTEOC]2.0.CO;2

    Article  PubMed  Google Scholar 

  40. Lawler S, Lanzaro GC (2005) Managing mosquitoes on the farm. University of California Division of Agriculture and Natural Resoruces Publications. 8158. http://anrcatalog.ucdavis.edu

  41. Day JF, Shaman J (2009) Severe winter freezes enhance St. Louis encephalitis virus amplification and epidemic transmission in peninsular Florida. J. Med. Entomol. 46(6):1498–1506

    Article  PubMed  Google Scholar 

  42. Cutwa MM, O’Meara GF (2006) Photographic guide to common mosquitoes of Florida. Florida Medical Entomology Laboratory 1:1–83

    Google Scholar 

  43. Moran NA, Tran P, Gerardo NM (2005) Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl. Environ. Microbiol. 71(12):8802–8810. doi:10.1128/AEM.71.12.8802-8810.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duguma D, Rugman-Jones P, Kaufman MG, Hall MW, Neufeld JD, Stouthamer R, Walton WE (2013) Bacterial communities associated with Culex mosquito larvae and two emergent aquatic plants of bioremediation importance. PLoS One 8(8):e72522. doi:10.1371/journal.pone.0072522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Raveloson LH, Ravelonandro P, Mavingui P (2011) Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol. Ecol. 75(3):377–389. doi:10.1111/j.1574-6941.2010.01012.x

    Article  CAS  PubMed  Google Scholar 

  46. Kennedy K, Hall MW, Lynch MD, Moreno-Hagelsieb G, Neufeld JD (2014) Evaluating bias of Illumina-based bacterial 16S rRNA gene profiles. Appl. Environ. Microbiol. 80(18):5717–5722. doi:10.1128/AEM.01451-14

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bartram AK, Lynch MDJ, Stearns JC, Moreno-Hagelsieb G, Neufeld JD (2011) Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl. Environ. Microbiol. 77(11):3846–3852. doi:10.1128/AEM.02772-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ross AA, Neufeld JD (2015) Microbial biogeography of a university campus. Microbiome 3:66. doi:10.1186/s40168-015-0135-0

    Article  PubMed  PubMed Central  Google Scholar 

  49. Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M (2014) Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS One 9 (8). doi: ARTN e105592

  50. Lynch MDJ, Masella AP, Hall MW, Bartram AK, Neufeld JD (2013) AXIOME: automated exploration of microbial diversity. Giga Science 2:3. doi:10.1186/2047-217x-2-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13:31. doi:10.1186/1471-2105-13-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10(10):996–998. doi:10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  53. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73(16):5261–5267. doi:10.1128/Aem.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7(5):335–336. doi:10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72(7):5069–5072. doi:10.1128/Aem.03006-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package. Community ecology package 10

  57. Mielke PW, Berry KJ, Johnson ES (1976) Multi-response permutation procedures for a priori classifications. Commun Stat Theory Methods 5(14):1409–1424. doi:10.1080/03610927608827451

    Article  Google Scholar 

  58. McCormick PV, Shuford RBE, Backus JG, Kennedy WC (1998) Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, USA. Hydrobiologia 362:185–208

    Article  Google Scholar 

  59. Minard G, Tran FH, Van VT, Goubert C, Bellet C, Lambert G, Kim KL, Thuy TH, Mavingui P, Valiente Moro C (2015) French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives. Front. Microbiol. 6:970. doi:10.3389/fmicb.2015.00970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lu M, Hulcr J, Sun JH (2016) The role of symbiotic microbes in insect invasions. Annu Rev Ecol Evol S 47:487–505. doi:10.1146/annurev-ecolsys-121415-032050

    Article  Google Scholar 

  61. Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P, Golecki J, Gad'on N, Gorlenko VM, Kompantseva EI, Drews G (1994) Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int. J. Syst. Bacteriol. 44(3):427–434. doi:10.1099/00207713-44-3-427

    Article  CAS  PubMed  Google Scholar 

  62. Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G, Alma A, Sacchi L, Bourtzis K, Mandrioli M, Cherif A, Bandi C, Daffonchio D (2010) Acetic acid bacteria, newly emerging symbionts of insects. Appl. Environ. Microbiol. 76(21):6963–6970. doi:10.1128/AEM.01336-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chandler J, Lang J, Bhatnagar S, Eisen J, Kopp A (2011) Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. PLoS Genet. 7 (9). doi:10.1371/journal.pgen.1002272

  64. Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37(5):699–735. doi:10.1111/1574-6976.12025

    Article  CAS  PubMed  Google Scholar 

  65. Le PT, Pontarotti P, Raoult D (2014) Alphaproteobacteria species as a source and target of lateral sequence transfers. Trends Microbiol. 22(3):147–156. doi:10.1016/j.tim.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  66. Alfonzo D, Grillet ME, Liria J, Navarro JC, Weaver SC, Barrera R (2005) Ecological characterization of the aquatic habitats of mosquitoes (Diptera: Culicidae) in enzootic foci of Venezuelan equine encephalitis virus in western Venezuela. J. Med. Entomol. 42(3):278–284

    Article  PubMed  Google Scholar 

  67. Herlemann DP, Lundin D, Labrenz M, Jurgens K, Zheng Z, Aspeborg H, Andersson AF (2013) Metagenomic de novo assembly of an aquatic representative of the verrucomicrobial class Spartobacteria. MBio 4(3):e00569–e00512. doi:10.1128/mBio.00569-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 71(3):495–548. doi:10.1128/MMBR.00005-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Johnson P, Azuolas J, Lavender CJ, Wishart E, Stinear TP, Hayman JA, Brown L, Jenkin GA, Fyfe J (2007) Mycobacterium ulcerans in mosquitoes captured during outbreak of Buruli ulcer, southeastern Australia. Emerg. Infect. Dis. 13(11):1653–1660

    Article  PubMed  PubMed Central  Google Scholar 

  70. Briones AM, Shililu J, Githure J, Novak R, Raskin L (2008) Thorsellia anophelis is the dominant bacterium in a Kenyan population of adult Anopheles gambiae mosquitoes. ISME J 2(1):74–82. doi:10.1038/ismej.2007.95

    Article  CAS  PubMed  Google Scholar 

  71. Lindh JM, Terenius O, Faye I (2005) 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species related to known insect symbionts. Appl. Environ. Microbiol. 71(11):7217–7223. doi:10.3201/eid1311.061369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kaempfer P (2006) Thorsellia anophelis gen nov, sp nov, a new member of the Gammaproteobacteria. Int J Syst Evol Micr. 56:335–338. doi:10.1099/ijs.0.63999-0

    Article  CAS  Google Scholar 

  73. Minard G, Mavingui P, Moro CV (2013) Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit. Vectors 6(1):1–12. doi:10.1186/1756-3305-6-146

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Katja Engel and Arthur Domingos for their technical assistance. We thank Dr. Jonathan Day for his valuable comments on earlier version of the manuscript. JDN acknowledges a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC). DD was supported by funding from Florida Department of Agriculture and Consumer Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagne Duguma.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 376 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duguma, D., Hall, M.W., Smartt, C.T. et al. Temporal Variations of Microbiota Associated with the Immature Stages of Two Florida Culex Mosquito Vectors. Microb Ecol 74, 979–989 (2017). https://doi.org/10.1007/s00248-017-0988-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-0988-9

Keywords

Navigation