Skip to main content

Neutral Evolution and Dispersal Limitation Produce Biogeographic Patterns in Microcystis aeruginosa Populations of Lake Systems


Molecular observations reveal substantial biogeographic patterns of cyanobacteria within systems of connected lakes. An important question is the relative role of environmental selection and neutral processes in the biogeography of these systems. Here, we quantify the effect of genetic drift and dispersal limitation by simulating individual cyanobacteria cells using an agent-based model (ABM). In the model, cells grow (divide), die, and migrate between lakes. Each cell has a full genome that is subject to neutral mutation (i.e., the growth rate is independent of the genome). The model is verified by simulating simplified lake systems, for which theoretical solutions are available. Then, it is used to simulate the biogeography of the cyanobacterium Microcystis aeruginosa in a number of real systems, including the Great Lakes, Klamath River, Yahara River, and Chattahoochee River. Model output is analyzed using standard bioinformatics tools (BLAST, MAFFT). The emergent patterns of nucleotide divergence between lakes are dynamic, including gradual increases due to accumulation of mutations and abrupt changes due to population takeovers by migrant cells (coalescence events). The model predicted nucleotide divergence is heterogeneous within systems, and for weakly connected lakes, it can be substantial. For example, Lakes Superior and Michigan are predicted to have an average genomic nucleotide divergence of 8200 bp or 0.14%. The divergence between more strongly connected lakes is much lower. Our results provide a quantitative baseline for future biogeography studies. They show that dispersal limitation can be an important factor in microbe biogeography, which is contrary to the common belief, and could affect how a system responds to environmental change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Baas-Becking LGM (1934) Geobiologie; of inleiding tot de milieukunde. WP Van Stockum & Zoon NV

  2. 2.

    Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10(7):497–506. doi:10.1038/nrmicro2795

    CAS  PubMed  Google Scholar 

  3. 3.

    Hellweger FL, van Sebille E, Fredrick ND (2014) Biogeographic patterns in ocean microbes emerge in a neutral agent-based model. Science 345(6202):1346–1349. doi:10.1126/science.1254421

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S, Jeppesen E, Conde-Porcuna JM, Schwenk K, Zwart G, Degans H, Vyverman W, De Meester L (2007) The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proc. Natl. Acad. Sci. U. S. A. 104(51):20404–20409. doi:10.1073/pnas.0707200104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Miller TR, McMahon KD (2011) Genetic diversity of cyanobacteria in four eutrophic lakes. FEMS Microbiol. Ecol. 78(2):336–348. doi:10.1111/j.1574-6941.2011.01162.x

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Miller TR, Beversdorf L, Chaston SD, McMahon KD (2013) Spatiotemporal molecular analysis of cyanobacteria blooms reveals Microcystis-Aphanizomenon interactions. PLoS One 8(9):e74933. doi:10.1371/journal.pone.0074933

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Beversdorf LJ, Miller TR, McMahon KD (2013) The role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lake. PLoS One 8(2):e56103. doi:10.1371/journal.pone.0056103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Davis TW, Watson SB, Rozmarynowycz MJ, Ciborowski JJH, McKay RM, Bullerjahn GS (2014) Phylogenies of microcystin-producing cyanobacteria in the lower Laurentian Great Lakes suggest extensive genetic connectivity. PLoS One 9(9):e106093. doi:10.1371/journal.pone.0106093

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Dyble J, Fahnenstiel GL, Litaker RW, Millie DF, Tester PA (2008) Microcystin concentrations and genetic diversity of Microcystis in the lower Great Lakes. Environ. Toxicol. 23(4):507–516. doi:10.1002/tox.20370

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Zwirglmaier K, Keiz K, Engel M, Geist J, Raeder U (2015) Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria. Front. Microbiol. 6

  11. 11.

    Otten TG, Crosswell JR, Mackey S, Dreher TW (2015) Application of molecular tools for microbial source tracking and public health risk assessment of a Microcystis bloom traversing 300km of the Klamath River. Harmful Algae 46:71–81. doi:10.1016/j.hal.2015.05.007

    Article  Google Scholar 

  12. 12.

    Hayden CJ, Beman JM (2015) Microbial diversity and community structure along a lake elevation gradient in Yosemite National Park, California. USA. Environmental Microbiology. doi:10.1111/1462-2920.12938

    PubMed  Google Scholar 

  13. 13.

    Condit R, Pitman N, Leigh EG, Chave J, Terborgh J, Foster RB, Núñez P, Aguilar S, Valencia R, Villa G, Muller-Landau HC, Losos E, Hubbell SP (2002) Beta-diversity in tropical Forest trees. Science 295(5555):666–669. doi:10.1126/science.1066854

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Reche I, Pulido-Villena E, Morales-Baquero R, Casamayor EO (2005) Does ecosystem size determine aquatic bacterial richness? Ecology 86(7):1715–1722

    Article  Google Scholar 

  15. 15.

    Hamilton M (2011) Population genetics. John Wiley & Sons

  16. 16.

    Wright S (1943) Isolation by distance. Genetics 28(2):114

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Strobeck C (1987) Average number of nucleotide differences in a sample from a single subpopulation: a test for population subdivision. Genetics 117(1):149–153

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Barton AD, Dutkiewicz S, Flierl G, Bragg J, Follows MJ (2010) Patterns of diversity in marine phytoplankton. Science 327(5972):1509–1511

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Kreft J-U, Plugge CM, Grimm V, Prats C, Leveau JHJ, Banitz T, Baines S, Clark J, Ros A, Klapper I, Topping CJ, Field AJ, Schuler A, Litchman E, Hellweger FL (2013) Mighty small: observing and modeling individual microbes becomes big science. Proc. Natl. Acad. Sci. 110(45):18027–18028. doi:10.1073/pnas.1317472110

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Chapra SC, Dolan DM (2012) Great Lakes total phosphorus revisited: 2. Mass balance modeling. J. Great Lakes Res. 38(4):741–754

    CAS  Article  Google Scholar 

  21. 21.

    Kristiansen J (1996) 16. Dispersal of freshwater algae — a review. Hydrobiologia 336(1):151–157. doi:10.1007/bf00010829

    Article  Google Scholar 

  22. 22.

    Moore D, Badzinski S, Cuthbert F, Wires L (2016) Waterbird & waterfowl monitoring on the Canadian Great Lakes. Accessed 9/9/2016 2016

  23. 23.

    Reynolds CS, Irish AE (1997) Modelling phytoplankton dynamics in lakes and reservoirs: the problem of in-situ growth rates. Hydrobiologia 349(1–3):5–17. doi:10.1023/A:1003020823129

    CAS  Article  Google Scholar 

  24. 24.

    Reavie ED, Barbiero RP, Allinger LE, Warren GJ (2014) Phytoplankton trends in the Great Lakes, 2001–2011. J. Great Lakes Res. 40(3):618–639 %@ 0380-1330

    Article  Google Scholar 

  25. 25.

    Kutovaya OA, McKay RML, Beall BFN, Wilhelm SW, Kane DD, Chaffin JD, Bridgeman TB, Bullerjahn GS (2012) Evidence against fluvial seeding of recurrent toxic blooms of Microcystis spp. in Lake Erie’s western basin. Harmful Algae 15:71–77. doi:10.1016/j.hal.2011.11.007

    Article  Google Scholar 

  26. 26.

    Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148(4):1667–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Lynch M, Ackerman MS, Gout J-F, Long H, Sung W, Thomas WK, Foster PL (2016) Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet 17(11):704–714. doi:10.1038/nrg.2016.104

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Garcίa-Villada L, Rico M, Altamirano M, Sánchezmartίn L, López-Rodas V, Costas E (2004) Occurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: characterisation and future implications in the use of copper sulphate as algaecide. Water Res. 38(8):2207–2213. doi:10.1016/j.watres.2004.01.036

    Article  Google Scholar 

  29. 29.

    López-Rodas V, Flores-Moya A, Maneiro E, Perdigones N, Marva F, García ME, Costas E (2007) Resistance to glyphosate in the cyanobacterium Microcystis aeruginosa as result of pre-selective mutations. Evol. Ecol. 21(4):535–547. doi:10.1007/s10682-006-9134-8

    Article  Google Scholar 

  30. 30.

    Costas E, Flores-Moya A, López-Rodas V (2008) Rapid adaptation of phytoplankters to geothermal waters is achieved by single mutations: were extreme environments ‘Noah's arks’ for photosynthesizers during the Neoproterozoic ‘snowball earth’? New Phytol. 180(4):922–932. doi:10.1111/j.1469-8137.2008.02620.x

    Article  PubMed  Google Scholar 

  31. 31.

    del Mar F-AM, Bañares-España E, García-Sánchez MJ, Hernández-López M, López-Rodas V, Costas E, Flores-Moya A (2013) Disentangling mechanisms involved in the adaptation of photosynthetic microorganisms to the extreme Sulphureous water from los Baños de Vilo (S Spain). Microb. Ecol. 66(4):742–751. doi:10.1007/s00248-013-0268-2

    Article  Google Scholar 

  32. 32.

    Long H, Miller SF, Strauss C, Zhao C, Cheng L, Ye Z, Griffin K, Te R, Lee H, Chen C-C, Lynch M (2016) Antibiotic treatment enhances the genome-wide mutation rate of target cells. Proc. Natl. Acad. Sci. 113(18):E2498–E2505. doi:10.1073/pnas.1601208113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Vos M, Didelot X (2009) A comparison of homologous recombination rates in bacteria and archaea. The ISME journal 3(2):199–208

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Tanabe Y, Kasai F, Watanabe MM (2007) Multilocus sequence typing (MLST) reveals high genetic diversity and clonal population structure of the toxic cyanobacterium Microcystis aeruginosa. Microbiology 153(11):3695–3703

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Lindström ES, Forslund M, Algesten G, Bergström AK (2006) External control of bacterial community structure in lakes. Limnol. Oceanogr. 51(1):339–342

    Article  Google Scholar 

  36. 36.

    Konstantinidis KT, Ramette A, Tiedje JM (2006) The bacterial species definition in the genomic era. Philosophical Transactions of the Royal Society B: Biological Sciences 361(1475):1929–1940. doi:10.1098/rstb.2006.1920

    Article  Google Scholar 

  37. 37.

    Hellweger FL (2013) Escherichia coli Adapts to tetracycline resistance plasmid (pBR322) by mutating endogenous potassium transport: in silico hypothesis testing. FEMS Microbiol. Ecol. 83(3):622–631. doi:10.1111/1574-6941.12019

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Fuhrman JA, Schwalbach MS, Stingl U (2008) Proteorhodopsins: an array of physiological roles? Nat Rev Micro 6(6):488–494

    CAS  Google Scholar 

  39. 39.

    Raghavan R, Kelkar YD, Ochman H (2012) A selective force favoring increased G+C content in bacterial genes. Proc. Natl. Acad. Sci. 109(36):14504–14507. doi:10.1073/pnas.1205683109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR, Stocker R, Follows MJ, Stepanauskas R, Chisholm SW (2014) Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344(6182):416–420. doi:10.1126/science.1248575

    CAS  Article  PubMed  Google Scholar 

Download references


We thank Steve Chapra for providing the Great Lakes model and Euan Reavie for cyanobacteria concentration data in the Great Lakes. Peter Furth and Haris Koutsopoulos provided advice on the theoretical aspect. Haiwei Luo helped with the mutation rates. Three anonymous reviewers provided constructive criticism. Financial support was provided by the National Science Foundation (NSFENG/ECCS/1404163) and the MIT Sea Grant College Program, under NOAA Grant Number NA10OAR4170086, MIT SG Project Number 2010-R/RT-2/RC-117.

Author information



Corresponding author

Correspondence to Ferdi L. Hellweger.

Electronic supplementary material


(PDF 369 kb)


(AVI 2063 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shirani, S., Hellweger, F.L. Neutral Evolution and Dispersal Limitation Produce Biogeographic Patterns in Microcystis aeruginosa Populations of Lake Systems. Microb Ecol 74, 416–426 (2017).

Download citation


  • Biogeography
  • Lake systems
  • Cyanobacteria
  • Neutral evolution
  • Dispersal limitation
  • Agent-based modeling