Microbial Ecology

, Volume 74, Issue 2, pp 416–426 | Cite as

Neutral Evolution and Dispersal Limitation Produce Biogeographic Patterns in Microcystis aeruginosa Populations of Lake Systems

  • Sahar Shirani
  • Ferdi L. HellwegerEmail author
Environmental Microbiology


Molecular observations reveal substantial biogeographic patterns of cyanobacteria within systems of connected lakes. An important question is the relative role of environmental selection and neutral processes in the biogeography of these systems. Here, we quantify the effect of genetic drift and dispersal limitation by simulating individual cyanobacteria cells using an agent-based model (ABM). In the model, cells grow (divide), die, and migrate between lakes. Each cell has a full genome that is subject to neutral mutation (i.e., the growth rate is independent of the genome). The model is verified by simulating simplified lake systems, for which theoretical solutions are available. Then, it is used to simulate the biogeography of the cyanobacterium Microcystis aeruginosa in a number of real systems, including the Great Lakes, Klamath River, Yahara River, and Chattahoochee River. Model output is analyzed using standard bioinformatics tools (BLAST, MAFFT). The emergent patterns of nucleotide divergence between lakes are dynamic, including gradual increases due to accumulation of mutations and abrupt changes due to population takeovers by migrant cells (coalescence events). The model predicted nucleotide divergence is heterogeneous within systems, and for weakly connected lakes, it can be substantial. For example, Lakes Superior and Michigan are predicted to have an average genomic nucleotide divergence of 8200 bp or 0.14%. The divergence between more strongly connected lakes is much lower. Our results provide a quantitative baseline for future biogeography studies. They show that dispersal limitation can be an important factor in microbe biogeography, which is contrary to the common belief, and could affect how a system responds to environmental change.


Biogeography Lake systems Cyanobacteria Neutral evolution Dispersal limitation Agent-based modeling 



We thank Steve Chapra for providing the Great Lakes model and Euan Reavie for cyanobacteria concentration data in the Great Lakes. Peter Furth and Haris Koutsopoulos provided advice on the theoretical aspect. Haiwei Luo helped with the mutation rates. Three anonymous reviewers provided constructive criticism. Financial support was provided by the National Science Foundation (NSFENG/ECCS/1404163) and the MIT Sea Grant College Program, under NOAA Grant Number NA10OAR4170086, MIT SG Project Number 2010-R/RT-2/RC-117.

Supplementary material

248_2017_963_MOESM1_ESM.pdf (369 kb)
ESM 1 (PDF 369 kb)
248_2017_963_MOESM2_ESM.avi (2 mb)
ESM 2 (AVI 2063 kb)


  1. 1.
    Baas-Becking LGM (1934) Geobiologie; of inleiding tot de milieukunde. WP Van Stockum & Zoon NVGoogle Scholar
  2. 2.
    Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10(7):497–506. doi: 10.1038/nrmicro2795 PubMedGoogle Scholar
  3. 3.
    Hellweger FL, van Sebille E, Fredrick ND (2014) Biogeographic patterns in ocean microbes emerge in a neutral agent-based model. Science 345(6202):1346–1349. doi: 10.1126/science.1254421 CrossRefPubMedGoogle Scholar
  4. 4.
    Van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S, Jeppesen E, Conde-Porcuna JM, Schwenk K, Zwart G, Degans H, Vyverman W, De Meester L (2007) The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proc. Natl. Acad. Sci. U. S. A. 104(51):20404–20409. doi: 10.1073/pnas.0707200104 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Miller TR, McMahon KD (2011) Genetic diversity of cyanobacteria in four eutrophic lakes. FEMS Microbiol. Ecol. 78(2):336–348. doi: 10.1111/j.1574-6941.2011.01162.x CrossRefPubMedGoogle Scholar
  6. 6.
    Miller TR, Beversdorf L, Chaston SD, McMahon KD (2013) Spatiotemporal molecular analysis of cyanobacteria blooms reveals Microcystis-Aphanizomenon interactions. PLoS One 8(9):e74933. doi: 10.1371/journal.pone.0074933 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Beversdorf LJ, Miller TR, McMahon KD (2013) The role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lake. PLoS One 8(2):e56103. doi: 10.1371/journal.pone.0056103 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Davis TW, Watson SB, Rozmarynowycz MJ, Ciborowski JJH, McKay RM, Bullerjahn GS (2014) Phylogenies of microcystin-producing cyanobacteria in the lower Laurentian Great Lakes suggest extensive genetic connectivity. PLoS One 9(9):e106093. doi: 10.1371/journal.pone.0106093 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dyble J, Fahnenstiel GL, Litaker RW, Millie DF, Tester PA (2008) Microcystin concentrations and genetic diversity of Microcystis in the lower Great Lakes. Environ. Toxicol. 23(4):507–516. doi: 10.1002/tox.20370 CrossRefPubMedGoogle Scholar
  10. 10.
    Zwirglmaier K, Keiz K, Engel M, Geist J, Raeder U (2015) Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria. Front. Microbiol. 6Google Scholar
  11. 11.
    Otten TG, Crosswell JR, Mackey S, Dreher TW (2015) Application of molecular tools for microbial source tracking and public health risk assessment of a Microcystis bloom traversing 300km of the Klamath River. Harmful Algae 46:71–81. doi: 10.1016/j.hal.2015.05.007 CrossRefGoogle Scholar
  12. 12.
    Hayden CJ, Beman JM (2015) Microbial diversity and community structure along a lake elevation gradient in Yosemite National Park, California. USA. Environmental Microbiology. doi: 10.1111/1462-2920.12938 PubMedGoogle Scholar
  13. 13.
    Condit R, Pitman N, Leigh EG, Chave J, Terborgh J, Foster RB, Núñez P, Aguilar S, Valencia R, Villa G, Muller-Landau HC, Losos E, Hubbell SP (2002) Beta-diversity in tropical Forest trees. Science 295(5555):666–669. doi: 10.1126/science.1066854 CrossRefPubMedGoogle Scholar
  14. 14.
    Reche I, Pulido-Villena E, Morales-Baquero R, Casamayor EO (2005) Does ecosystem size determine aquatic bacterial richness? Ecology 86(7):1715–1722CrossRefGoogle Scholar
  15. 15.
    Hamilton M (2011) Population genetics. John Wiley & SonsGoogle Scholar
  16. 16.
    Wright S (1943) Isolation by distance. Genetics 28(2):114PubMedPubMedCentralGoogle Scholar
  17. 17.
    Strobeck C (1987) Average number of nucleotide differences in a sample from a single subpopulation: a test for population subdivision. Genetics 117(1):149–153PubMedPubMedCentralGoogle Scholar
  18. 18.
    Barton AD, Dutkiewicz S, Flierl G, Bragg J, Follows MJ (2010) Patterns of diversity in marine phytoplankton. Science 327(5972):1509–1511CrossRefPubMedGoogle Scholar
  19. 19.
    Kreft J-U, Plugge CM, Grimm V, Prats C, Leveau JHJ, Banitz T, Baines S, Clark J, Ros A, Klapper I, Topping CJ, Field AJ, Schuler A, Litchman E, Hellweger FL (2013) Mighty small: observing and modeling individual microbes becomes big science. Proc. Natl. Acad. Sci. 110(45):18027–18028. doi: 10.1073/pnas.1317472110 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chapra SC, Dolan DM (2012) Great Lakes total phosphorus revisited: 2. Mass balance modeling. J. Great Lakes Res. 38(4):741–754CrossRefGoogle Scholar
  21. 21.
    Kristiansen J (1996) 16. Dispersal of freshwater algae — a review. Hydrobiologia 336(1):151–157. doi: 10.1007/bf00010829 CrossRefGoogle Scholar
  22. 22.
    Moore D, Badzinski S, Cuthbert F, Wires L (2016) Waterbird & waterfowl monitoring on the Canadian Great Lakes. Accessed 9/9/2016 2016
  23. 23.
    Reynolds CS, Irish AE (1997) Modelling phytoplankton dynamics in lakes and reservoirs: the problem of in-situ growth rates. Hydrobiologia 349(1–3):5–17. doi: 10.1023/A:1003020823129 CrossRefGoogle Scholar
  24. 24.
    Reavie ED, Barbiero RP, Allinger LE, Warren GJ (2014) Phytoplankton trends in the Great Lakes, 2001–2011. J. Great Lakes Res. 40(3):618–639 %@ 0380-1330 CrossRefGoogle Scholar
  25. 25.
    Kutovaya OA, McKay RML, Beall BFN, Wilhelm SW, Kane DD, Chaffin JD, Bridgeman TB, Bullerjahn GS (2012) Evidence against fluvial seeding of recurrent toxic blooms of Microcystis spp. in Lake Erie’s western basin. Harmful Algae 15:71–77. doi: 10.1016/j.hal.2011.11.007 CrossRefGoogle Scholar
  26. 26.
    Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148(4):1667–1686PubMedPubMedCentralGoogle Scholar
  27. 27.
    Lynch M, Ackerman MS, Gout J-F, Long H, Sung W, Thomas WK, Foster PL (2016) Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet 17(11):704–714. doi: 10.1038/nrg.2016.104 CrossRefPubMedGoogle Scholar
  28. 28.
    Garcίa-Villada L, Rico M, Altamirano M, Sánchezmartίn L, López-Rodas V, Costas E (2004) Occurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: characterisation and future implications in the use of copper sulphate as algaecide. Water Res. 38(8):2207–2213. doi: 10.1016/j.watres.2004.01.036 CrossRefGoogle Scholar
  29. 29.
    López-Rodas V, Flores-Moya A, Maneiro E, Perdigones N, Marva F, García ME, Costas E (2007) Resistance to glyphosate in the cyanobacterium Microcystis aeruginosa as result of pre-selective mutations. Evol. Ecol. 21(4):535–547. doi: 10.1007/s10682-006-9134-8 CrossRefGoogle Scholar
  30. 30.
    Costas E, Flores-Moya A, López-Rodas V (2008) Rapid adaptation of phytoplankters to geothermal waters is achieved by single mutations: were extreme environments ‘Noah's arks’ for photosynthesizers during the Neoproterozoic ‘snowball earth’? New Phytol. 180(4):922–932. doi: 10.1111/j.1469-8137.2008.02620.x CrossRefPubMedGoogle Scholar
  31. 31.
    del Mar F-AM, Bañares-España E, García-Sánchez MJ, Hernández-López M, López-Rodas V, Costas E, Flores-Moya A (2013) Disentangling mechanisms involved in the adaptation of photosynthetic microorganisms to the extreme Sulphureous water from los Baños de Vilo (S Spain). Microb. Ecol. 66(4):742–751. doi: 10.1007/s00248-013-0268-2 CrossRefGoogle Scholar
  32. 32.
    Long H, Miller SF, Strauss C, Zhao C, Cheng L, Ye Z, Griffin K, Te R, Lee H, Chen C-C, Lynch M (2016) Antibiotic treatment enhances the genome-wide mutation rate of target cells. Proc. Natl. Acad. Sci. 113(18):E2498–E2505. doi: 10.1073/pnas.1601208113 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Vos M, Didelot X (2009) A comparison of homologous recombination rates in bacteria and archaea. The ISME journal 3(2):199–208CrossRefPubMedGoogle Scholar
  34. 34.
    Tanabe Y, Kasai F, Watanabe MM (2007) Multilocus sequence typing (MLST) reveals high genetic diversity and clonal population structure of the toxic cyanobacterium Microcystis aeruginosa. Microbiology 153(11):3695–3703CrossRefPubMedGoogle Scholar
  35. 35.
    Lindström ES, Forslund M, Algesten G, Bergström AK (2006) External control of bacterial community structure in lakes. Limnol. Oceanogr. 51(1):339–342CrossRefGoogle Scholar
  36. 36.
    Konstantinidis KT, Ramette A, Tiedje JM (2006) The bacterial species definition in the genomic era. Philosophical Transactions of the Royal Society B: Biological Sciences 361(1475):1929–1940. doi: 10.1098/rstb.2006.1920 CrossRefGoogle Scholar
  37. 37.
    Hellweger FL (2013) Escherichia coli Adapts to tetracycline resistance plasmid (pBR322) by mutating endogenous potassium transport: in silico hypothesis testing. FEMS Microbiol. Ecol. 83(3):622–631. doi: 10.1111/1574-6941.12019 CrossRefPubMedGoogle Scholar
  38. 38.
    Fuhrman JA, Schwalbach MS, Stingl U (2008) Proteorhodopsins: an array of physiological roles? Nat Rev Micro 6(6):488–494Google Scholar
  39. 39.
    Raghavan R, Kelkar YD, Ochman H (2012) A selective force favoring increased G+C content in bacterial genes. Proc. Natl. Acad. Sci. 109(36):14504–14507. doi: 10.1073/pnas.1205683109 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR, Stocker R, Follows MJ, Stepanauskas R, Chisholm SW (2014) Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344(6182):416–420. doi: 10.1126/science.1248575 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Civil & Environmental EngineeringNortheastern UniversityBostonUSA

Personalised recommendations