Advertisement

Microbial Ecology

, Volume 74, Issue 2, pp 289–301 | Cite as

Significant Change in Marine Plankton Structure and Carbon Production After the Addition of River Water in a Mesocosm Experiment

  • E. FouillandEmail author
  • A. Trottet
  • C. Alves-de-Souza
  • D. Bonnet
  • T. Bouvier
  • M. Bouvy
  • S. Boyer
  • L. Guillou
  • E. Hatey
  • H. Jing
  • C. Leboulanger
  • E. Le Floc’h
  • H. Liu
  • S. Mas
  • B. Mostajir
  • J. Nouguier
  • D. Pecqueur
  • E. Rochelle-Newall
  • C. Roques
  • C. Salles
  • M.-G. Tournoud
  • C. Vasseur
  • F. Vidussi
Microbiology of Aquatic Systems

Abstract

Rivers are known to be major contributors to eutrophication in marine coastal waters, but little is known on the short-term impact of freshwater surges on the structure and functioning of the marine plankton community. The effect of adding river water, reducing the salinity by 15 and 30%, on an autumn plankton community in a Mediterranean coastal lagoon (Thau Lagoon, France) was determined during a 6-day mesocosm experiment. Adding river water brought not only nutrients but also chlorophyceans that did not survive in the brackish mesocosm waters. The addition of water led to initial increases (days 1–2) in bacterial production as well as increases in the abundances of bacterioplankton and picoeukaryotes. After day 3, the increases were more significant for diatoms and dinoflagellates that were already present in the Thau Lagoon water (mainly Pseudo-nitzschia spp. group delicatissima and Prorocentrum triestinum) and other larger organisms (tintinnids, rotifers). At the same time, the abundances of bacterioplankton, cyanobacteria, and picoeukaryote fell, some nutrients (NH4 +, SiO4 3−) returned to pre-input levels, and the plankton structure moved from a trophic food web based on secondary production to the accumulation of primary producers in the mesocosms with added river water. Our results also show that, after freshwater inputs, there is rapid emergence of plankton species that are potentially harmful to living organisms. This suggests that flash flood events may lead to sanitary issues, other than pathogens, in exploited marine areas.

Keywords

Flood impact Coastal ecosystems Planktonic food web Potentially harmful species 

Notes

Acknowledgments

This study was part of the RESTHAU project (2007-2010) “Impact of river loadings on microbial communities from Thau Lagoon” funded by the French national EC2CO program and coordinated by E. Fouilland. A. Trottet received a postdoctoral fellowship from University of Montpellier 2. D. Pecqueur received a national PhD fellowship provided by the French Ministry of Education and Research. We should like to thank Louise Oriol (UMR 7621 LOMIC, Banyuls/Mer) and Thibault Dinet for the nutrient analyses and P. Raimbault (UMR Institut Méditerranéen d’Océanologie, Marseille) for the stable isotope analyses. This project used the facilities of the Mediterranean Center of Marine Ecosystem Experimental Research MEDIMEER funded by UMR 5119 ECOSYM “Ecologie des Systèmes Marins Côtiers,” CNRS Institute of Ecology and Environment (InEE), University of Montpellier 2, IFR 129 Armand Sabatier, CNRS-GDR2476 Réseaux Trophiques Aquatiques, and Région Languedoc-Roussillon. The authors thank the two anonymous reviewers for their insightful comments and suggestions.

Supplementary material

248_2017_962_MOESM1_ESM.docx (45 kb)
ESM 1 (DOCX 45 kb)
248_2017_962_MOESM2_ESM.docx (44 kb)
ESM 2 (DOCX 44 kb)
248_2017_962_MOESM3_ESM.docx (21 kb)
ESM 3 (DOCX 21 kb)
248_2017_962_MOESM4_ESM.docx (44 kb)
ESM 4 (DOCX 44 kb)
248_2017_962_MOESM5_ESM.docx (21 kb)
ESM 5 (DOCX 21 kb)

References

  1. 1.
    Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100:179–196. doi: 10.1016/S0269-7491(99)00091-3 CrossRefPubMedGoogle Scholar
  2. 2.
    Fouilland E, Trottet A, Bancon-Montigny C, et al (2012) Impact of a river flash flood on microbial carbon and nitrogen production in a Mediterranean Lagoon (Thau Lagoon, France). Estuar. Coast. Shelf Sci. 113:192–204CrossRefGoogle Scholar
  3. 3.
    Pecqueur D, Vidussi F, Fouilland E, et al (2011) Dynamics of microbial planktonic food web components during a river flash flood in a Mediterranean coastal lagoon. Hydrobiologia 673:13–27. doi: 10.1007/s10750-011-0745-x CrossRefGoogle Scholar
  4. 4.
    Guadayol Ò, Peters F, Marrasé C, et al (2009) Episodic meteorological and nutrient-load events as drivers of coastal planktonic ecosystem dynamics: a time-series analysis. Mar. Ecol. Prog. Ser. 381:139–155. doi: 10.3354/meps07939 CrossRefGoogle Scholar
  5. 5.
    Guizien K, Charles F, Lantoine F, Naudin J-J (2007) Nearshore dynamics of nutrients and chlorophyll during Mediterranean-type flash-floods. Aquat. Living Resour. 20:3–14. doi: 10.1051/alr:2007011 CrossRefGoogle Scholar
  6. 6.
    Chu Y, Salles C, Tournoud M-G, et al (2011) Faecal bacterial loads during flood events in Northwestern Mediterranean coastal rivers. J. Hydrol. 405:501–511. doi: 10.1016/j.jhydrol.2011.05.047 CrossRefGoogle Scholar
  7. 7.
    López-Flores R, Garcés E, Boix D, et al (2006) Comparative composition and dynamics of harmful dinoflagellates in Mediterranean salt marshes and nearby external marine waters. Harmful Algae 5:637–648. doi: 10.1016/j.hal.2006.01.001 CrossRefGoogle Scholar
  8. 8.
    Brown JM, Felice NR, Scalfone NB, Hewson I (2012) Influence of habitat confluence on aquatic microbial assemblages in experimental mesocosms. Aquat. Microb. Ecol. 66:33–40CrossRefGoogle Scholar
  9. 9.
    Naudin J-J, Cauwet G, Fajon C, et al (2001) Effect of mixing on microbial communities in the Rhone River plume. J. Mar. Syst. 28:203–227. doi: 10.1016/S0924-7963(01)00004-5 CrossRefGoogle Scholar
  10. 10.
    Pujo-Pay M, Conan P, Joux F, et al (2006) Impact of phytoplankton and bacterial production on nutrient and DOM uptake in the Rhône River plume (NW Mediterranean). Mar. Ecol. Prog. Ser. 315:43–54. doi: 10.3354/meps315043 CrossRefGoogle Scholar
  11. 11.
    Remane A (1934) Die Brackwasserfauna. Zool. Anz. 7:34–74Google Scholar
  12. 12.
    Attrill M, Rundle S (2002) Ecotone or ecocline: ecological boundaries in estuaries. Estuar. Coast. Shelf Sci. 55:929–936. doi: 10.1006/ecss.2002.1036 CrossRefGoogle Scholar
  13. 13.
    Cushing DH (1990) Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Adv. Mar. Biol. 26:249–293. doi: 10.1016/S0065-2881(08)60202-3 CrossRefGoogle Scholar
  14. 14.
    Koroleff F (1983) Determination of ammonia. In: Grasshoff K, Ehrhardt M, Kremling K (eds) Methods of seawater analysis, 2nd ef. Verlag Chemie, Weinheim, p 150–157Google Scholar
  15. 15.
    Tréguer P, Le Corre P (1975) Handbook of seawater nutrient analyses. Autoanalyser II Technicon user guide, 2nd edn. Univ. Bretagne Occidentale, Laboratoire de Chimie Marine, Brest, FranceGoogle Scholar
  16. 16.
    Raimbault P, Pouvesle W, Diaz F, et al (1999) Wet-oxidation and automated colorimetry for simultaneous determination of organic carbon, nitrogen and phosphorus dissolved in seawater. Mar. Chem. 66:161–169. doi: 10.1016/S0304-4203(99)00038-9 CrossRefGoogle Scholar
  17. 17.
    Zapata M, Rodriguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Progr Ser 195:29–45CrossRefGoogle Scholar
  18. 18.
    Vidussi F, Marty JC, Chiaverini J (2000) Phytoplankton pigments during the transition from spring bloom to oligotrophy in the northwestern Mediterranean Sea. Deep Sea Res 47:423–445CrossRefGoogle Scholar
  19. 19.
    DuRand MD, Olson RJ (1996) Contributions of phytoplankton light scattering and cell concentration change diel variation in beam attenuation in equatorial Pacific from flow cytometry measurements of pico-, ultra and nanoplankton. Deep Sea Res 43:891–906CrossRefGoogle Scholar
  20. 20.
    Lee S, Fuhrman JA (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microb 53:1298–1303Google Scholar
  21. 21.
    Utermöhl H (1958) Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitt Int Ver Theor Angew Limnol 9:1–38Google Scholar
  22. 22.
    Lund JWG, Kipling C, Lecren ED (1958) The inverted microscope method of estimating algal number and the statistical basis of estimating by counting. Hydrobiologia 11:143–170CrossRefGoogle Scholar
  23. 23.
    Hillebrand H, Dürselen CD, Kirschtel D, Pollingher D, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35:403–424CrossRefGoogle Scholar
  24. 24.
    Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25:1331–1346CrossRefGoogle Scholar
  25. 25.
    Mullin MM, Sloan PR, Eppley RW (1966) Relationship between carbon content, cell volume and area in phytoplankton. Limnol. Oceanogr. 11:307–311CrossRefGoogle Scholar
  26. 26.
    Booth CB (1993) Estimating cell concentration and biomass of autotrophic plankton using microscopy. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds). Handbook of methods in aquatic microbial ecology. Lewis. pp 199–205Google Scholar
  27. 27.
    Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine oligotrichous’ ciliates from estuarine and coastal waters. Limnol Oceangr 34:1097–1103CrossRefGoogle Scholar
  28. 28.
    Rose M (1933) Copepodes pelagiques, Faune de France 26. Paul Lechevalier, ParisGoogle Scholar
  29. 29.
    Alcaraz M, Saiz E, Calbet A, Trepat I, Broglio E (2003) Estimating zooplankton biomass through image analysis. Mar. Biol. 143:307–315CrossRefGoogle Scholar
  30. 30.
    Bouvy M, Bettarel Y, Bouvier C, Domaizon I, Jacquet S, Le Floc’h E, Montanié H, Mostajir B, Sime-Ngando T, Torréton J-P, Vidussi F, Bouvier T (2011) Trophic interactions between viruses, bacteria and nanoflagellates under various nutrient conditions and simulated climate change. Environ. Microbiol. 13:1842–1857CrossRefPubMedGoogle Scholar
  31. 31.
    Bell RT (1990) An explanation for the variability in the conversion factor deriving bacterial cell production from incorporation of (3H)-thymidine. Limnol. Oceanogr. 35:910–915CrossRefGoogle Scholar
  32. 32.
    Whittaker RH (1952) A study of summer foliage insect communities in the Great Smoky Mountains. Ecol. Monogr. 22:1–44CrossRefGoogle Scholar
  33. 33.
    Von Ende CN (1993) Repeated-measures analysis: growth and other time-dependent measures. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman and Hall. pp 113–137Google Scholar
  34. 34.
    Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice-Hall Inc., Englewood CliffsGoogle Scholar
  35. 35.
    Lionard M, Muylaert K, Van Gansbeke D, Vyverman W (2005) Influence of changes in salinity and light intensity on growth of phytoplankton communities from the Schelde river and estuary (Belgium/The Netherlands). Hydrobiologia 540:105–115CrossRefGoogle Scholar
  36. 36.
    Flaming IA, Kromkamp J (1994) Responses of respiration and photosynthesis of Scenedesmus protuberans Fritsch to gradual and steep salinity increases. J. Plankton Res. 16:1781–1791CrossRefGoogle Scholar
  37. 37.
    Liess A, Rowe O, Francoeur SN, Guo J, Lange K, Shröder A, Reichstein B, Lefèbure R, Deininger A, Mathisen P, Faithfull CL (2016) Terrestrial runoff boots phytoplankton in a Mediterranean coastal lagoon, but these effects do not propagate to higher trophic level. Hydrobiologia. doi: 10.1007/s10750-015-2461-4 Google Scholar
  38. 38.
    Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W, Dennison WC, Dortch Q, Gobler CJ, Heil CA, Humphries E, Lewitus A, Magnien R, Marshall HG, Sellner K, Stockwell DA, Stoecker DK, Suddleson M (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3–13CrossRefGoogle Scholar
  39. 39.
    Fouilland E, Tolosa T, Bonnet D, Bouvier C, Bouvier T, Bouvy M, Got P, Le Floc’h E, Mostajir B, Roques C, Sempéré R, Sime-Ngando T, Vidussi F (2014) Bacterial carbon dependence on freshly produced phytoplankton exudates under different nutrient availability and grazing pressure conditions in coastal marine waters. FEMS Microbiol. Ecol. 87:757–769CrossRefPubMedGoogle Scholar
  40. 40.
    Trottet A, Leboulanger C, Vidussi F, Pete R, Bouvy M, Fouilland E (2015) Heterotrophic bacteria show weak competition for nitrogen in coastal waters (Thau Lagon) in autumn. Microb. Ecol. doi: 10.1007/s00248-015-0658-8 PubMedGoogle Scholar
  41. 41.
    López-Flores R, Boix D, Badosa A, Brucet S, Quintana XD (2009) Environmental factors affecting bacterioplankton and phytoplankton dynamics in confined Mediterranean salt marshes (NE Spain). J. Exp. Mar. Biol. Ecol. 369:118–126CrossRefGoogle Scholar
  42. 42.
    Bonnet D, Carlotti F (2001) Development and egg production in Centropages typicus (Copepoda: Calanoida) fed different food types: a laboratory study. Mar. Ecol. Prog. Ser. 224:133–148CrossRefGoogle Scholar
  43. 43.
    Hessen DO, Nilssen JP (1983) High pH and the abundances of two commonly co-occurring freshwater copepods (Copepoda, Cyclopoida). Inter J Limnol 19:195–201CrossRefGoogle Scholar
  44. 44.
    Chinnery FE, Williams JA (2004) The influence of temperature and salinity on Acartia (Copepoda: Calanoida) nauplii survival. Mar. Biol. 145:733–738Google Scholar
  45. 45.
    Brucet S, Compte J, Boix D, et al (2008) Feeding of nauplii, copepodites and adults of Calanipeda aquaedulcis (Calanoida) in Mediterranean salt marshes. Mar. Ecol. Prog. Ser. 355:183–191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • E. Fouilland
    • 1
    Email author
  • A. Trottet
    • 1
    • 2
  • C. Alves-de-Souza
    • 3
    • 4
  • D. Bonnet
    • 1
  • T. Bouvier
    • 1
  • M. Bouvy
    • 1
  • S. Boyer
    • 1
  • L. Guillou
    • 3
  • E. Hatey
    • 1
  • H. Jing
    • 5
  • C. Leboulanger
    • 1
  • E. Le Floc’h
    • 1
  • H. Liu
    • 5
  • S. Mas
    • 6
  • B. Mostajir
    • 1
  • J. Nouguier
    • 1
  • D. Pecqueur
    • 1
  • E. Rochelle-Newall
    • 7
  • C. Roques
    • 1
  • C. Salles
    • 8
  • M.-G. Tournoud
    • 8
  • C. Vasseur
    • 1
    • 9
  • F. Vidussi
    • 1
  1. 1.UMR 9190 MARBEC Marine Biodiversity, Exploitation and ConservationCNRS, IRD, IFREMER, Université de MontpellierMontpellier & SèteFrance
  2. 2.DHI Water & Environment (S) Pte LtdSingaporeSingapore
  3. 3.Sorbonne Universités, Université Pierre et Marie Curie - Paris 6, CNRS, UMR 7144, Station Biologique de RoscoffRoscoff cedexFrance
  4. 4.Laboratório de Ficologia, Departamento de BotânicaMuseu Nacional/Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  5. 5.Division of Life ScienceHong Kong University of Science and TechnologyKowloonHong Kong
  6. 6.UMS 3301Centre d’écologie marine expérimentale MEDIMEERUniversité de Montpellier, CNRS, Station MarineSèteFrance
  7. 7.UMR 7618 iEES-Paris (IRD-UPMC-CNRS-INRA-UDD-UPEC), UPMC, case 237Paris cedexFrance
  8. 8.UMR 5569 Laboratoire HydroSciences (CNRS, IRD, UM)Université de Montpellier, case courrier 057Montpellier cedex 5France
  9. 9.LOV-UPMC-CNRS, UMR 7093, Station zoologiqueVillefranche-sur-merFrance

Personalised recommendations