Microbial Ecology

, Volume 74, Issue 2, pp 402–415 | Cite as

Prokaryotic Abundance and Activity in Permafrost of the Northern Victoria Land and Upper Victoria Valley (Antarctica)

  • Rosabruna La Ferla
  • Maurizio Azzaro
  • Luigi Michaud
  • Gabriella Caruso
  • Angelina Lo Giudice
  • Rodolfo Paranhos
  • Anderson S Cabral
  • Antonella Conte
  • Alessandro Cosenza
  • Giovanna Maimone
  • Maria Papale
  • Alessandro Ciro Rappazzo
  • Mauro Guglielmin
Environmental Microbiology

Abstract

Victoria Land permafrost harbours a potentially large pool of cold-affected microorganisms whose metabolic potential still remains underestimated. Three cores (BC-1, BC-2 and BC-3) drilled at different depths in Boulder Clay (Northern Victoria Land) and one sample (DY) collected from a core in the Dry Valleys (Upper Victoria Valley) were analysed to assess the prokaryotic abundance, viability, physiological profiles and potential metabolic rates. The cores drilled at Boulder Clay were a template of different ecological conditions (different temperature regime, ice content, exchanges with atmosphere and with liquid water) in the same small basin while the Dry Valleys site was very similar to BC-2 conditions but with a complete different geological history and ground ice type. Image analysis was adopted to determine cell abundance, size and shape as well as to quantify the potential viable and respiring cells by live/dead and 5-cyano-2,3-ditolyl-tetrazolium chloride staining, respectively. Subpopulation recognition by apparent nucleic acid contents was obtained by flow cytometry. Moreover, the physiological profiles at community level by Biolog-Ecoplate™ as well as the ectoenzymatic potential rates on proteinaceous (leucine-aminopeptidase) and glucidic (ß-glucosidase) organic matter and on organic phosphates (alkaline-phosphatase) by fluorogenic substrates were tested. The adopted methodological approach gave useful information regarding viability and metabolic performances of microbial community in permafrost. The occurrence of a multifaceted prokaryotic community in the Victoria Land permafrost and a large number of potentially viable and respiring cells (in the order of 104–105) were recognised. Subpopulations with a different apparent DNA content within the different samples were observed. The physiological profiles stressed various potential metabolic pathways among the samples and intense utilisation rates of polymeric carbon compounds and carbohydrates, mainly in deep samples. The measured enzymatic activity rates suggested the potential capability of the microbial community to decompose proteins and polysaccharides. The microbial community seems to be appropriate to contribute to biogeochemical cycling in this extreme environment.

Keywords

Permafrost Microbial community Microbial activity Physiological profiles Antarctica 

References

  1. 1.
    Abramovich RS, Pomati F, Jungblut AD, et al (2012) T-RFLP fingerprinting analysis of bacterial communities in debris cones, Northern Victoria Land, Antarctica. Permafrost Periglac Proc 23(3):244–248CrossRefGoogle Scholar
  2. 2.
    Andrade L, Gonzalez AM, Araujo FV, et al (2003) Flow cytometry assessment of bacterioplankton in tropical marine environments. J Microbiol Meth 55:841–850CrossRefGoogle Scholar
  3. 3.
    Blanco Y, Prieto-Ballesteros O, Gómez MJ, et al (2012) Prokaryotic communities and operating metabolisms in the surface and the permafrost of Deception Island (Antarctica). Environ. Microbiol. 14(9):2495–2510CrossRefPubMedGoogle Scholar
  4. 4.
    Bockheim JG, McLeod M (2013) Glacial geomorphology of the Victoria Valley System, Ross Sea Region, Antarctica. Geomorphology 193:14–24CrossRefGoogle Scholar
  5. 5.
    Cannone N, Wagner D, Hubberten HW, et al (2008) Biotic and abiotic factors influencing soil properties across a latitudinal gradient in Victoria Land, Antarctica. Geoderma 144(1–2):50–65CrossRefGoogle Scholar
  6. 6.
    Cary S, McDonald I, Barret JE, et al (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138CrossRefPubMedGoogle Scholar
  7. 7.
    Cowan D, Russell N, Mamais A, et al (2002) Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6:431–436CrossRefPubMedGoogle Scholar
  8. 8.
    Danovaro R, Dell’Anno A, Trucco A, et al (2001) Determination of virus abundance in marine sediments. Appl. Environ. Microbiol. 67:1384–1387CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Deming JW (2002) Psychrophiles and polar regions. Curr. Opin. Microbiol. 5:301–309CrossRefPubMedGoogle Scholar
  10. 10.
    Dmitriev VV, Suzina NE, Rusakova TG, Gilichinskii DA, Duda VI (2001) Ultrastructural characteristics of natural forms of microorganisms isolated from permafrost grounds of Eastern Siberia by the method of low-temperature fractionation. Doklady Biol. Sci. 378:304–307CrossRefGoogle Scholar
  11. 11.
    Duda VI, Suzina NE, Polivtseva VN, Boronin AM (2012) Ultramicrobacteria: formation of the concept and contribution of ultramicrobacteria to biology. Microbiology 81(4):379–390CrossRefGoogle Scholar
  12. 12.
    Duhamel S, Jacquet S (2006) Flow cytometric analysis of bacteria- and virus-like particles in lake sediments. J Microbiol Meth 64:316–332CrossRefGoogle Scholar
  13. 13.
    Fillinger S, Ruijter G, Tamás MJ, et al (2001) Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans. Mol. Microbiol. 39:145–157CrossRefPubMedGoogle Scholar
  14. 14.
    Garland JL (1996) Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol. Biochem. 28(2):213–221CrossRefGoogle Scholar
  15. 15.
    Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57(8):2351–2359PubMedPubMedCentralGoogle Scholar
  16. 16.
    Gasol JM, Del Giorgio PA (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci. Mar. 64:197–224CrossRefGoogle Scholar
  17. 17.
    Gilichinsky D, Rivkina E, Bakermans C, et al (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol. Ecol. 53(1):117–128CrossRefPubMedGoogle Scholar
  18. 18.
    Gilichinsky DA, Wilson GS, Friedmann EI, et al (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7(2):275–311CrossRefPubMedGoogle Scholar
  19. 19.
    Gilichinsky D, Vishnivetskaya T, Petrova M (2008) Bacteria in permafrost. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer-Verlag, Berlin Heidelberg, pp. 83–102CrossRefGoogle Scholar
  20. 20.
    Grannas AM, Shepson PB, Filley TR (2004) Photochemistry and nature of organic matter in Arctic and Antarctic snow. Global Biochem Cycles 18:1–10CrossRefGoogle Scholar
  21. 21.
    Guglielmin M, Cannone N (2012) A permafrost warming in a cooling Antarctica? Clim. Chang. 111:177–195CrossRefGoogle Scholar
  22. 22.
    Guglielmin M, Biasini A, Smiraglia C (1997) The contribution of geoelectrical investigations in the analysis of periglacial and glacial landforms in ice free areas of the Northern Foothills (Northern Victoria Land, Antarctica). Geographiska Annaler: Series A, Physical Geography 79:17–24CrossRefGoogle Scholar
  23. 23.
    Guglielmin M, Lewkowicz A, French HM, et al (2009) Lake-ice blisters, Terra Nova Bay area, Northern Victoria Land, Antarctica. Geogr. Ann. 91A(2):99–111CrossRefGoogle Scholar
  24. 24.
    Guglielmin M, Balks MB, Adlam L, et al (2011) Permafrost thermal regime from two 30-m deep boreholes in Southern Victoria Land, Antarctica. Permafrost Periglac Proc 22:129–139CrossRefGoogle Scholar
  25. 25.
    Guglielmin M, Dalle Fratte M, Cannone N (2014) Permafrost warming and vegetation changes in continental Antarctica. Environ. Res. Lett. doi:10.1088/1748-9326/9/4/045001 Google Scholar
  26. 26.
    Hoppe HG (1993) Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. FL Lewis Publisher, Boca Raton, pp. 423–432Google Scholar
  27. 27.
    Jansson J, Taş N (2014) The microbial ecology of permafrost. Nat Rev Microbiol 12:414–425CrossRefPubMedGoogle Scholar
  28. 28.
    Johnson SS, Hebsgaard MB, Christensen TR, et al (2007) Ancient bacteria show evidence of DNA repair. PNAS 104(36):14401–14405CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kenarova A, Encheva M, Chipeva V, et al (2013) Physiological diversity of bacterial communities from different soil locations on Livingston Island, South Shetland archipelago, Antarctica. Pol Biol 36:223–233CrossRefGoogle Scholar
  30. 30.
    Kuhn E, Ichimura AS, Peng V, et al (2014) Brine assemblages of ultrasmall microbial cells within the ice cover of Lake Vida, Antarctica. Appl. Environ. Microbiol. 80(12):3687–3698CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    La Ferla R, Maimone G, Azzaro M, et al (2012) Vertical distribution of the prokaryotic cell size in the Mediterranean Sea. Helgol. Mar. Res. 66(4):635–650CrossRefGoogle Scholar
  32. 32.
    La Ferla R, Maimone G, Lo Giudice A, et al (2015) Cell size and other phenotypic traits of prokaryotic cells in pelagic areas of the Ross Sea (Antarctica). Hydrobiologia 761:181–194CrossRefGoogle Scholar
  33. 33.
    Litchfield CD (1998) Survival strategies for microorganisms in hypersaline environments and their relevance to life on early Mars. Meteorit. Planet. Sci. 33:813–819CrossRefPubMedGoogle Scholar
  34. 34.
    Mann PJ, Sobczak W, Larue MM, et al (2014) Evidence for key enzymatic controls on metabolism of Arctic river organic matter. Glob. Chang. Biol. 20:1089–1100CrossRefPubMedGoogle Scholar
  35. 35.
    Michaud L, Caruso C, Mangano S, et al (2012) Predominance of Flavobacterium, Pseudomonas, and Polaromonas within the prokaryotic community of freshwater shallow lakes in the Northern Victoria Land, East Antarctica. FEMS Microbiol. Ecol. 82:391–404CrossRefPubMedGoogle Scholar
  36. 36.
    Mock T, Thomas DN (2005) Recent advances in sea-ice microbiology. Environ. Microbiol. 7(5):605–619CrossRefPubMedGoogle Scholar
  37. 37.
    Mulyukin AL, Demkina EV, Manucharova NA, Akimov VN, Andersen D, McKay C, Gal’chenko VF (2014) The prokaryotic community of subglacial bottom sediments of Antarctic Lake Untersee: detection by cultural and direct microscopic techniques. Mikrobiologiya 83(2):215–224Google Scholar
  38. 38.
    Niederberger TD, Sohm JA, Gunderson TE, et al (2015) Microbial community composition of transiently wetted Antarctic Dry Valley soils. Front. Microbiol. 6:1–12Google Scholar
  39. 39.
    Orombelli G, Baroni C, Denton GH (1991) Late Cenozoic glacial history of the Terra Nova Bay region, Northern Victoria Land, Antarctica. Geogr. Fis. Din. Quat. 13(2):139–163Google Scholar
  40. 40.
    Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35 °C. FEMS Microbiol. Ecol. 59(2):500–512CrossRefPubMedGoogle Scholar
  41. 41.
    Ponder MA, Thomashow MF, Tiedje JM (2008) Metabolic activity of Siberian permafrost isolates, Psychrobacter arcticus and Exiguobacterium sibiricum, at low water activities. Extremophiles 12(4):481–490CrossRefPubMedGoogle Scholar
  42. 42.
    Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25:943–948CrossRefGoogle Scholar
  43. 43.
    Sala MM, Arin L, Balagué V, et al (2005) Functional diversity of bacterioplankton assemblages in Western Antarctic seawaters during late spring. Mar. Ecol. Prog. Ser. 292:13–21CrossRefGoogle Scholar
  44. 44.
    Sala MM, Estrada M, Gasol JM (2006) Seasonal changes in the functional diversity of bacterioplankton in contrasting coastal environments of the NW Mediterranean. Aquat. Microb. Ecol. 44:1–9CrossRefGoogle Scholar
  45. 45.
    Sherr BF, del Giorgio P, Sherr EB (1999) Estimating abundance and single-cell characteristics of respiring bacteria via the redox dye CTC. Aquat. Microb. Ecol. 18:117–131CrossRefGoogle Scholar
  46. 46.
    Solomon PS, Waters ODC, Oliver RP (2007) Decoding the mannitol enigma in filamentous fungi. Trends Microbiol. 15:257–262CrossRefPubMedGoogle Scholar
  47. 47.
    Steven B, Léveillé R, Pollard WH, et al (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267CrossRefPubMedGoogle Scholar
  48. 48.
    Steven B, Briggs G, McKay CP, et al (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol. Ecol. 59:513–523CrossRefPubMedGoogle Scholar
  49. 49.
    Takano Y, Mori H, Kaneko T, et al (2006) Phosphatase and microbial activity with biochemical indicators in semi-permafrost active layer sediments over the past 10.000 years. Appl. Geochem. 21:48–57CrossRefGoogle Scholar
  50. 50.
    Tamppari LK, Anderson RM, Archer Jr PD (2012) Effects of extreme cold and aridity on soils and habitability: McMurdo Dry Valleys as an analogue for the Mars Phoenix landing site. Ant Sci 24(3):211–228CrossRefGoogle Scholar
  51. 51.
    Vorobyova E, Minkovsky N, Mamukelashvili A, et al (2001) Micro-organisms and biomarkers in permafrost. In: Paepe R, Melnikov VP (eds) Permafrost response on economic development, environmental security and natural resources. Kluwer Academic Publishers, Dordrecht, pp. 527–541CrossRefGoogle Scholar
  52. 52.
    Wagner D (2008) Microbial communities and processes in Arctic permafrost environments. In: Dion P, Shekhar Nautiyal C (eds) Soil biology microbiology of extreme soils. Springer-Verlag, Berlin Heidelberg, pp. 133–154CrossRefGoogle Scholar
  53. 53.
    Wagner D, Kobabe S, Liebner S (2009) Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, Northeastern Siberia. Can. J. Microbiol. 55(1):73–83CrossRefPubMedGoogle Scholar
  54. 54.
    Waldrop MP, Wickland KP, White III R, et al (2010) Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. Glob. Chang. Biol. 16:2543–2554Google Scholar
  55. 55.
    Wilkins D, Yau S, Williams TJ, et al (2013) Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol. Rev. 37:303–335CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang DC, Brouchkov A, Griva G, et al (2013) Isolation and characterization of bacteria from ancient Siberian permafrost sediment. Biology 2(1):85–106CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zucconi L, Selbmann L, Buzzini P, et al (2012) Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol. 35(5):749–757CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Rosabruna La Ferla
    • 1
  • Maurizio Azzaro
    • 1
  • Luigi Michaud
    • 2
  • Gabriella Caruso
    • 1
  • Angelina Lo Giudice
    • 1
    • 2
  • Rodolfo Paranhos
    • 3
  • Anderson S Cabral
    • 3
  • Antonella Conte
    • 2
  • Alessandro Cosenza
    • 1
  • Giovanna Maimone
    • 1
  • Maria Papale
    • 2
  • Alessandro Ciro Rappazzo
    • 1
  • Mauro Guglielmin
    • 4
  1. 1.National Council of Research (IAMC-CNR)Institute for Coastal Marine EnvironmentMessinaItaly
  2. 2.Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
  3. 3.Institute of BiologyFederal University of Rio de JaneiroRio de JaneiroBrazil
  4. 4.Department of Theoretical and Applied SciencesUniversity of InsubriaVareseItaly

Personalised recommendations