Microbial Ecology

, Volume 74, Issue 2, pp 466–473 | Cite as

Reducing Virulence and Biofilm of Pseudomonas aeruginosa by Potential Quorum Sensing Inhibitor Carotenoid: Zeaxanthin

  • Barış Gökalsın
  • Busecan Aksoydan
  • Burak Erman
  • Nüzhet Cenk Sesal
Physiology and Biotechnology


Pseudomonas aeruginosa can regulate its virulence gene expressions by using a signal system called quorum sensing. It is known that inhibition of quorum sensing can block biofilm formation and leave the bacteria defenseless. Therefore, it is necessary to determine natural sources to obtain potential quorum sensing inhibitors. This study aims to investigate an alternative treatment approach by utilizing the carotenoid zeaxanthin to reduce the expressions of P. aeruginosa virulence factors through quorum sensing inhibition. The inhibition potential of zeaxanthin was determined by in silico screening from a library of 638 lichen metabolites. Fluorescent monitor strains were utilized for quorum sensing inhibitor screens, and quantitative reverse-transcriptase PCR assay was performed for evaluating gene expression. Results indicate that zeaxanthin is a better inhibitor than the lichen secondary metabolite evernic acid, which was previously shown to be capable of inhibiting P. aeruginosa quorum sensing systems.


Quorum sensing Pseudomonas aeruginosa Zeaxanthin Biofilm Molecular docking 



This study was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) [113S306 COST FA1202]. We thank Tim Holm Jakobsen and Michael Givskov for providing the monitor strains.


  1. 1.
    Jones RN, Stilwell MG, Rhomberg PR, Sader HS (2009) Antipseudomonal activity of piperacillin/tazobactam: more than a decade of experience from the SENTRY Antimicrobial Surveillance Program (1997-2007). Diagn Micr Infec Dis 65:331–334. doi: 10.1016/j.diagmicrobio.2009.06.022 CrossRefGoogle Scholar
  2. 2.
    Lambert ML, Suetens C, Savey A, Palomar M, Hiesmayr M, Morales I, Agodi A, Frank U, Mertens K, Schumacher M, Wolkewitz M (2011) Clinical outcomes of health-care-associated infections and antimicrobial resistance in patients admitted to European intensive-care units: a cohort study. Lancet Infect. Dis. 11:30–38. doi: 10.1016/S1473-3099(10)70258-9 CrossRefPubMedGoogle Scholar
  3. 3.
    Zhanel GG, Hoban DJ, Schurek K, Karlowsky JA (2004) Role of efflux mechanisms on fluoroquinolone resistance in Streptococcus pneumoniae and Pseudomonas aeruginosa. Int J Antimicrob Ag 24:529–535. doi: 10.1016/j.ijantimicag.2004.08.003 CrossRefGoogle Scholar
  4. 4.
    Ciofu O, Tolker-Nielsen T, Jensen PO, Wang H, Hoiby N (2015) Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv. Drug Deliv. Rev. 85:7–23. doi: 10.1016/j.addr.2014.11.017 CrossRefPubMedGoogle Scholar
  5. 5.
    Brackman G, Coenye T (2015) Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Design 21:5–11CrossRefGoogle Scholar
  6. 6.
    Jakobsen TH, Bjarnsholt T, Jensen PO, Givskov M, Hoiby N (2013) Targeting quorum sensing in Pseudomonas aeruginosa biofilms: current and emerging inhibitors. Future Microbiol 8:901–921. doi: 10.2217/fmb.13.57 CrossRefPubMedGoogle Scholar
  7. 7.
    Girard G, Bloemberg GV (2008) Central role of quorum sensing in regulating the production of pathogenicity factors in Pseudomonas aeruginosa. Future Microbiol 3:97–106. doi: 10.2217/17460913.3.1.97 CrossRefPubMedGoogle Scholar
  8. 8.
    Diggle SP, Winzer K, Chhabra SR, Chhabra SR, Worrall KE, Camara M, Williams P (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol. Microbiol. 50:29–43. doi: 10.1046/j.1365-2958.2003.03672.x CrossRefPubMedGoogle Scholar
  9. 9.
    McGrath S, Wade DS, Pesci EC (2004) Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol. Lett. 230:27–34. doi: 10.1016/S0378-1097(03)00849-8 CrossRefPubMedGoogle Scholar
  10. 10.
    Lee J, Wu J, Deng Y, Wang J, Wang C, Wang J, Chang C, Dong Y, Williams P, Zhang LH (2013) A cell-cell communication signal integrates quorum sensing and stress response. Nat. Chem. Biol. 9:339–343. doi: 10.1038/nchembio.1225 CrossRefPubMedGoogle Scholar
  11. 11.
    Hentzer M, Eberl L, Nielsen J, Givskov M (2003) Quorum sensing—a novel target for the treatment of biofilm infections. BioDrugs 17:241–250. doi: 10.2165/00063030-200317040-00003 CrossRefPubMedGoogle Scholar
  12. 12.
    Zeng Z, Qian L, Cao L, Tan H, Huang Y, Xue X, Shen Y, Zhou S (2008) Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. Appl Microbiol Biot 79:119–126. doi: 10.1007/s00253-008-1406-5 CrossRefGoogle Scholar
  13. 13.
    Pompilio A, Pomponio S, Di Vincenzo V, Crocetta V, Nicoletti M, Piovano M, Garbarino JA, Di Bonaventura G (2013) Antimicrobial and antibiofilm activity of secondary metabolites of lichens against methicillin-resistant Staphylococcus aureus strains from cystic fibrosis patients. Future Microbiol 8:281–292. doi: 10.2217/Fmb.12.142 CrossRefPubMedGoogle Scholar
  14. 14.
    Lal B, Upreti DK (1995) Ethnobotanical notes on three Indian lichens. Lichenologist 27:77–79. doi: 10.1006/lich.1995.0006 CrossRefGoogle Scholar
  15. 15.
    Malhotra S, Subban R, Singh A (2008) Lichens—role in traditional medicine and drug discovery. The Internet Journal of Alternative Medicine 5:151–170Google Scholar
  16. 16.
    Štepigová J, Vráblíková H, Lang J, Večeřová K, Barták M (2007) Glutathione and zeaxanthin formation during high light stress in foliose lichens. Plant Soil Environ. 53:340–344Google Scholar
  17. 17.
    Sajilata M, Singhal R, Kamat M (2008) The carotenoid pigment zeaxanthin—a review. Compr. Rev. Food Sci. Food Saf. 7:29–49CrossRefGoogle Scholar
  18. 18.
    Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2016) PubChem substance and compound databases. Nucleic Acids Res. 44:D1202–D1213. doi: 10.1093/nar/gkv951 CrossRefPubMedGoogle Scholar
  19. 19.
    Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52:1757–1768. doi: 10.1021/ci3001277 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Annapoorani A, Umamageswaran V, Parameswari R, Pandian SK, Ravi AV (2012) Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa. J. Comput. Aided Mol. Des. 26:1067–1077. doi: 10.1007/s10822-012-9599-1 CrossRefPubMedGoogle Scholar
  21. 21.
    Gould TA, Schweizer HP, Churchill ME (2004) Structure of the Pseudomonas aeruginosa acyl-homoserinelactone synthase LasI. Mol. Microbiol. 53:1135–1146. doi: 10.1111/j.1365-2958.2004.04211.x CrossRefPubMedGoogle Scholar
  22. 22.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res. 28:235–242CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem. 49:3315–3321CrossRefPubMedGoogle Scholar
  24. 24.
    Tateda K, Comte R, Pechere J-C, Köhler T, Yamaguchi K, Van Delden C (2001) Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Ch 45:1930–1933CrossRefGoogle Scholar
  25. 25.
    Holloway BW, Morgan AF (1986) Genome organization in Pseudomonas. Annu. Rev. Microbiol. 40:79–105. doi: 10.1146/annurev.micro.40.1.79 CrossRefPubMedGoogle Scholar
  26. 26.
    Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Hoiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiol-Sgm 148:87–102CrossRefGoogle Scholar
  27. 27.
    Yang L, Rybtke MT, Jakobsen TH, Hentzer M, Bjarnsholt T, Givskov M, Tolker-Nielsen T (2009) Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrob Agents Ch 53:2432–2443. doi: 10.1128/Aac.01283-08 CrossRefGoogle Scholar
  28. 28.
    Bjarnsholt T, van Gennip M, Jakobsen TH, Christensen LD, Jensen PO, Givskov M (2010) In vitro screens for quorum sensing inhibitors and in vivo confirmation of their effect. Nat. Protoc. 5:282–293. doi: 10.1038/nprot.2009.205 CrossRefPubMedGoogle Scholar
  29. 29.
    De Kievit T (2009) Quorum sensing in Pseudomonas aeruginosa biofilms. Environ. Microbiol. 11:279–288CrossRefPubMedGoogle Scholar
  30. 30.
    Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song ZJ, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22:3803–3815. doi: 10.1093/emboj/cdg366 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol. 13:34–40. doi: 10.1016/j.tim.2004.11.010 CrossRefPubMedGoogle Scholar
  32. 32.
    Al-Ani I, Zimmermann S, Reichling J, Wink M (2015) Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. Phytomedicine 22:245–255. doi: 10.1016/j.phymed.2014.11.019 CrossRefPubMedGoogle Scholar
  33. 33.
    Azimi H, Khakshur AA, Aghdasi I, Fallah-Tafti M, Abdollahi M (2012) A review of animal and human studies for management of benign prostatic hyperplasia with natural products: perspective of new pharmacological agents. Inflamm Allergy Drug Targets 11:207–221CrossRefPubMedGoogle Scholar
  34. 34.
    Savo V, Joy R, Caneva G, McClatchey WC (2015) Plant selection for ethnobotanical uses on the Amalfi Coast (Southern Italy). J. Ethnobiol. Ethnomed. 11:58. doi: 10.1186/s13002-015-0038-y CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Truchado P, Tomas-Barberan FA, Larrosa M, Allende A (2012) Food phytochemicals act as quorum sensing inhibitors reducing production and/or degrading autoinducers of Yersinia enterocolitica and Erwinia carotovora. Food Control 24:78–85. doi: 10.1016/j.foodcont.2011.09.006 CrossRefGoogle Scholar
  36. 36.
    Gokalsin B, Sesal NC (2016) Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa. World J. Microbiol. Biotechnol. 32:150. doi: 10.1007/s11274-016-2105-5 CrossRefPubMedGoogle Scholar
  37. 37.
    Jakobsen TH, van Gennip M, Phipps RK, Shanmugham MS, Christensen LD, Alhede M, Skindersoe ME, Rasmussen TB, Friedrich K, Uthe F, Jensen PO, Moser C, Nielsen KF, Eberl L, Larsen TO, Tanner D, Hoiby N, Bjarnsholt T, Givskov M (2012) Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob. Agents Chemother. 56:2314–2325. doi: 10.1128/AAC.05919-11 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jakobsen TH, Bragason SK, Phipps RK, Christensen LD, van Gennip M, Alhede M, Skindersoe M, Larsen TO, Hoiby N, Bjarnsholt T, Givskov M (2012) Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl Environ Microb 78:2410–2421. doi: 10.1128/Aem.05992-11 CrossRefGoogle Scholar
  39. 39.
    Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L, Hoiby N, Givskov M (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151:1325–1340. doi: 10.1099/mic.0.27715-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Barış Gökalsın
    • 1
  • Busecan Aksoydan
    • 2
  • Burak Erman
    • 3
  • Nüzhet Cenk Sesal
    • 1
  1. 1.Department of Biology, Faculty of Arts and SciencesMarmara UniversityIstanbulTurkey
  2. 2.Department of Biophysics, Institute of Health SciencesBahçeşehir UniversityIstanbulTurkey
  3. 3.Chemical and Biological Engineering DepartmentKoç UniversityIstanbulTurkey

Personalised recommendations