Microbial Ecology

, Volume 74, Issue 1, pp 250–258 | Cite as

Patterns in Gut Microbiota Similarity Associated with Degree of Sociality among Sex Classes of a Neotropical Primate

  • Katherine R. Amato
  • Sarie Van Belle
  • Anthony Di Fiore
  • Alejandro Estrada
  • Rebecca Stumpf
  • Bryan White
  • Karen E. Nelson
  • Rob Knight
  • Steven R. Leigh
Host Microbe Interactions

Abstract

Studies of human and domestic animal models indicate that related individuals and those that spend the most time in physical contact typically have more similar gut microbial communities. However, few studies have examined these factors in wild mammals where complex social dynamics and a variety of interacting environmental factors may impact the patterns observed in controlled systems. Here, we explore the effect of host kinship and time spent in social contact on the gut microbiota of wild, black howler monkeys (Alouatta pigra). Our results indicate that closely related individuals had less similar gut microbial communities than non-related individuals. However, the effect was small. In contrast, as previously reported in baboons and chimpanzees, individuals that spent more time in contact (0 m) and close proximity (0–1 m) had more similar gut microbial communities. This pattern was driven by adult female-adult female dyads, which generally spend more time in social contact than adult male-adult male dyads or adult male-adult female dyads. Relative abundances of individual microbial genera such as Bacteroides, Clostridium, and Streptococcus were also more similar in individuals that spent more time in contact or close proximity. Overall, our data suggest that even in arboreal primates that live in small social groups and spend a relatively low proportion of their time in physical contact, social interactions are associated with variation in gut microbiota composition. Additionally, these results demonstrate that within a given host species, subgroups of individuals may interact with the gut microbiota differently.

Keywords

Gut microbiota Alouatta Kinship Social contact 

Supplementary material

248_2017_938_MOESM1_ESM.doc (38 kb)
Table S1(DOC 37 kb)
248_2017_938_MOESM2_ESM.doc (35 kb)
Table S2(DOC 35 kb)
248_2017_938_MOESM3_ESM.doc (76 kb)
Table S3(DOC 75 kb)
248_2017_938_MOESM4_ESM.xlsx (228 kb)
Table S4(XLSX 228 kb)
248_2017_938_MOESM5_ESM.doc (119 kb)
Table S5(DOC 119 kb)
248_2017_938_MOESM6_ESM.doc (34 kb)
Table S6(DOC 34 kb)

References

  1. 1.
    Moeller AH, Peeters M, Ndjango JB, Li Y, Hahn BH, Ochman H (2013) Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Res. 23:1715–1720CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. PNAS 108:3047–3052CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Mackie RI, White BA (1997) Gastrointestinal microbiology, vol 1. Chapman and Hall, New YorkCrossRefGoogle Scholar
  5. 5.
    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JD, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nat 486:222–227Google Scholar
  6. 6.
    Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, Turroni S, Biagi E, Peano C, Severgnini M, Fiori J, Gotti R, De Bellis G, Luiselli D, Brigidi P, Mabulla A, Marlowe F, Henry AG, Crittenden AN (2014) Gut microbiome of Hadza hunter-gatherers. Nat Comm 5:3654. doi:10.1038/ncomms4654 CrossRefGoogle Scholar
  7. 7.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS 107:14691–14696CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nat 505:559–566. doi:10.1038/nature12820 CrossRefGoogle Scholar
  9. 9.
    Lozupone C, Stombaugh J, Gonzalez A, Ackermann G, Wendel D, Vasquez-Baeza Y, Jansson JK, Gordon JI, Knight R (2013) Meta-analysis studies of the human microbiota. Genome Res. doi:10.1101/gr.151803.112 PubMedPubMedCentralGoogle Scholar
  10. 10.
    Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, Wilson BA, Nelson KE, White BA, Garber PA (2015) The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69:434–443. doi:10.1007/s00248-014-0554-7 CrossRefPubMedGoogle Scholar
  11. 11.
    Kohl KD, Dearing MD (2012) Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores. Ecol. Lett. 15:1008–1015CrossRefPubMedGoogle Scholar
  12. 12.
    Kisidayova S, Varadyova Z, Pristas P, Piknova M, Nigutova K, Petrzelkova KJ, Profousova I, Schovancova K, Kamler J, Modry D (2009) Effects of high- and low-fiber diets on fecal fermentation and fecal microbial populations of captive chimpanzees. Am. J. Primatol. 71:548–557CrossRefPubMedGoogle Scholar
  13. 13.
    Nelson TM, Rogers TL, Carlini AR, Brown MV (2012) Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals. Environ. Microbiol. 15:1132–1145CrossRefPubMedGoogle Scholar
  14. 14.
    Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua K, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. PNAS 107:18933–18938CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Buhnik-Rosenblau K, Danin-Poleg Y, Kashi Y (2011) Host genetics and gut microbiota. In: Rosenberg E, Gophna U (eds) Beneficial microorganisms in multicellular life forms. Springer, Berlin, pp. 281–295Google Scholar
  16. 16.
    Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA (2012) An application of ecological theory toward an understanding of the human microbiome. Science 336:1255–1262CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zoetendal EG, Akkermans ADL, Akkermans-va Vliet WM, de Visser JAGM, De Vos WM (2001) The host genotype affects the bacterial community in the human gastrointestinal tract. Microb. Ecol. Health Dis. 13:129–134CrossRefGoogle Scholar
  18. 18.
    Song SJ, Lauber C, Costello EK, Lozupone C, Humphrey G, Berg-Lyons D, Caporaso JG, Knights D, Clemente JC, Nakielny S, Gordon JI, Fierer N, Knight R (2013) Cohabiting family members share microbiota with one another and with their dogs. eLife 2:e00458PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kinross J, Nicholson J (2012) Gut microbiota: dietary and social modulation of gut microbiota in the elderly. Nat Rev Gastroenterol Hepatol 9:563–564CrossRefPubMedGoogle Scholar
  20. 20.
    Bennett G, Malone M, Sauther ML, Cuozzo FP, White BA, Nelson KE, Stumpf RM, Knight R, Leigh SR, Amato KR (2016) Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta). Am. J. Primatol. 78:883–892CrossRefPubMedGoogle Scholar
  21. 21.
    Tung J, Barreiro LB, Burns MB, Grenier JC, Lynch J, Greieneisen LE, Altmann J, Alberts S, Blekhman R, Archie EA (2015) Social networks predict gut microbiome composition in wild baboons. eLife 4:e05224PubMedCentralGoogle Scholar
  22. 22.
    Degnan PH, Pusey AE, Lonsdorf EV, Goodall J, Wroblewski EE, Wilson ML, Rudicell RS, Hahn BH, Ochman H (2012) Factors associated with the diversification of the gut microbial communities within chimpanzees from Gombe National Park. PNAS 109:13034–13039CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Moeller AH, Foerster S, Wilson ML, Pusey AE, Hahn BH, Ochman H (2016) Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2:e1500997CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schino G (2001) Grooming, competition and social rank among female primates: a meta-analysis. Anim. Behav. 62:265–271CrossRefGoogle Scholar
  25. 25.
    Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nat 489:242–249CrossRefGoogle Scholar
  26. 26.
    Van Belle S, Estrada AE (2006) Demographic features of Alouatta pigra populations in extensive and fragmented forests. In: Estrada AE, Garber PA, Pavelka MS, Luecke L (eds) New perspectives in the study of Mesoamerican primates: distribution, ecology, behavior, and conservation. Springer, New York, pp. 121–142CrossRefGoogle Scholar
  27. 27.
    Van Belle S, Estrada AE, Di Fiore A (2014) Kin-biased spatial associations and social interactions in male and female black howler monkeys (Alouatta pigra). Behaviour 151:2029–2057CrossRefGoogle Scholar
  28. 28.
    Van Belle S, Estrada AE, Ziegler TE, Strier KB (2009) Sexual behavior across ovarian cycles in wild black howler monkeys (Alouatta pigra): male mate guarding and female mate choice. Am. J. Primatol. 71:153–164CrossRefPubMedGoogle Scholar
  29. 29.
    Amato KR, Martinez-Mota R, Righini N, Raguet-Schofield ML, Corcione FP, Marini E, Dominguez-Bello MG, Stumpf RM, White BA, Nelson KE, Knight R, Leigh SR (2016) Phylogenetic and ecological factors impact the gut microbiota of Neotropical primate species. Oecologia 180:717–733CrossRefPubMedGoogle Scholar
  30. 30.
    Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, Wilson BA, Nelson KE, White BA, Garber PA (2014) The role of gut microbes in satisfying the demands of adult female and juvenile wild, black howler monkeys (Alouatta pigra). Am. J. Phys. Anthr. 155:652–664. doi:10.1002/ajpa.2262 CrossRefGoogle Scholar
  31. 31.
    Amato KR, Yeoman CJ, Kent A, Carbonero F, Righini N, Estrada AE, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR (2013) Habitat degradation impacts primate gastrointestinal microbiomes. ISME J 7:1344–1353CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Van Belle S, Estrada AE, Strier KB (2008) Social relationships among male Alouatta pigra. Int. J. Primatol. 29:1481–1498CrossRefGoogle Scholar
  33. 33.
    Van Belle S, Estrada AE, Strier KB (2011) Insights into social relationships among female black howler monkeys (Alouatta pigra) at Palenque National Park, Mexico. Curr Zoo 57:1–7CrossRefGoogle Scholar
  34. 34.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10:57–59CrossRefPubMedGoogle Scholar
  36. 36.
    Hamady M, Knight R (2009) Microbial community profiling for human microbiome projects: tools, techniques and challenges. Genome Res. 19:1141–1152CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kuczynski J, Costello EK, Nemergut DR, Zaneveld J, Lauber C, Knights D, Koren O, Fierer N, Kelley ST, Ley RE, Gordon JI, Knight R (2010) Direct sequencing of the human microbiome readily reveals community differences. Genome Biol. 11:210CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Konovalov DA, Manning C, Henshaw MT (2004) KINGROUP: a program for pedigree relationship reconstructoin and kin group assignments using genetic markers. Mol. Ecol. 4:779–782CrossRefGoogle Scholar
  39. 39.
    Dekker D, Krackhardt D, Snijders TAB (2007) Sensitivity of MRQAP tests to collinearity and autocorrelation conditions. Psychometrika 72:563–581CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Borgatti SP, Everett MG, Freeman LC (2002) Ucinet for Windows: software for social network analysis. Analytic Technologies, Harvard, MAGoogle Scholar
  41. 41.
    Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, Waller A, Mende DR, Kultima JR, Martin J, Kota K, Sunyaev SR, Weinstock GM, Bork P (2013) Genomic variation landscape of the human gut microbiome. Nat 493:45–50CrossRefGoogle Scholar
  42. 42.
    Leamy LJ, Kelly SA, Nietfeldt J, Legge R, Ma F, Hua K, Sinha R, Peterson DA, Walter J, Benson AK, Pomp D (2014) Host genetics and diet, but not immunoglobulin a expression, converge to shape compositional features of the gut microbiome in an advanced intercross population of mice. Genome Biol. 15:552CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Spor A, Koren O, Ley RE (2011) Unraveling the effects of the environment and host genotype on the gut microbiome. Nat Rev 9:279–290Google Scholar
  44. 44.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nat 457:480–484CrossRefGoogle Scholar
  45. 45.
    Van Belle S, Estrada AE, Strier KB, Di Fiore A (2012) Genetic structure and kinship patterns in a population of black howler monkeys, Alouatta pigra, at Palenque National Park, Mexico. Am. J. Primatol. 74:948–957CrossRefPubMedGoogle Scholar
  46. 46.
    Mackie RI (2002) Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integr. Comp. Biol. 42:319–326CrossRefPubMedGoogle Scholar
  47. 47.
    Boone DR, Garrity GM, Brenner DJ, Krieg NR, Staley JT (2005) Bergey’s manual of systematic bacteriology. Springer Science and Business Media, New YorkGoogle Scholar
  48. 48.
    Tsai YT, Cheng PC, Pan TM (2012) The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl. Microbiol. Biotechnol. 96:853–862CrossRefPubMedGoogle Scholar
  49. 49.
    Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118CrossRefPubMedGoogle Scholar
  50. 50.
    Duncan SH, Hold GH, Barcenilla A, Stewart CS, Flint HJ (2002) Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Sys Evol Microbiol 52:1615–1620Google Scholar
  51. 51.
    Ho L, Cortes-Ortiz L, Dias PAD, Canales-Espinosa D, Kitchen DM, Bergman TJ (2014) Effect of ancestry on behavioral variation in two species of howler monkeys (Alouatta pigra and A. palliata) and their hybrids. Am. J. Primatol. 76:855–867CrossRefPubMedGoogle Scholar
  52. 52.
    Di Fiore A, Link A, Campbell C (2011) The Atelines: behavioral and socioecological diversity in a new world monkey radiation. In: Campbell C, Fuentes A, MacKinnon KC, Panger M, Bearder SK (eds) Primates in perspective, 2nd edn. Oxford University Press, Oxford, pp. 390–416Google Scholar
  53. 53.
    Noguera-Julian M, Rocafort M, Guillen Y, Rivera J, Casadella M, Nowak P, Hildebrand F, Zeller G, Parera M, Bellido R, Rodriguez C, Carrillo J, Mothe B, Coll J, Bravo I, Estany C, Herrero C, Saz J, Sirera G, Torrela A, Navarro J, Crespo M, Brander C, Negredo E, Blanco J, Guarner F, Calle ML, Bork P, Sonnerborg A (in press) Gut microbiota linked to sexual preference and HIV infection. EBioMedicineGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Katherine R. Amato
    • 1
  • Sarie Van Belle
    • 2
  • Anthony Di Fiore
    • 2
  • Alejandro Estrada
    • 3
  • Rebecca Stumpf
    • 4
    • 5
  • Bryan White
    • 5
    • 6
  • Karen E. Nelson
    • 7
  • Rob Knight
    • 8
  • Steven R. Leigh
    • 9
  1. 1.Department of AnthropologyNorthwestern UniversityEvanstonUSA
  2. 2.Department of AnthropologyUniversity of TexasAustinUSA
  3. 3.Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  4. 4.Department of AnthropologyUniversity of IllinoisUrbanaUSA
  5. 5.Institute for Genomic BiologyUniversity of IllinoisUrbanaUSA
  6. 6.Department of Animal SciencesUniversity of IllinoisUrbanaUSA
  7. 7.J. Craig Venter InstituteRockvilleUSA
  8. 8.School of MedicineUniversity of CaliforniaSan DiegoUSA
  9. 9.Department of AnthropologyUniversity of ColoradoBoulderUSA

Personalised recommendations