Microbial Ecology

, Volume 74, Issue 1, pp 217–226 | Cite as

Greater Species Richness of Bacterial Skin Symbionts Better Suppresses the Amphibian Fungal Pathogen Batrachochytrium Dendrobatidis

  • Jonah Piovia-ScottEmail author
  • Daniel Rejmanek
  • Douglas C. Woodhams
  • S. Joy Worth
  • Heather Kenny
  • Valerie McKenzie
  • Sharon P. Lawler
  • Janet E. Foley
Host Microbe Interactions


The symbiotic microbes that grow in and on many organisms can play important roles in protecting their hosts from pathogen infection. While species diversity has been shown to influence community function in many other natural systems, the question of how species diversity of host-associated symbiotic microbes contributes to pathogen resistance is just beginning to be explored. Understanding diversity effects on pathogen resistance could be particularly helpful in combating the fungal pathogen Batrachochytrium dendrobatidis (Bd) which has caused dramatic population declines in many amphibian species and is a major concern for amphibian conservation. Our study investigates the ability of host-associated bacteria to inhibit the proliferation of Bd when grown in experimentally assembled biofilm communities that differ in species number and composition. Six bacterial species isolated from the skin of Cascades frogs (Rana cascadae) were used to assemble bacterial biofilm communities containing 1, 2, 3, or all 6 bacterial species. Biofilm communities were grown with Bd for 7 days following inoculation. More speciose bacterial communities reduced Bd abundance more effectively. This relationship between bacterial species richness and Bd suppression appeared to be driven by dominance effects—the bacterial species that were most effective at inhibiting Bd dominated multi-species communities—and complementarity: multi-species communities inhibited Bd growth more than monocultures of constituent species. These results underscore the notion that pathogen resistance is an emergent property of microbial communities, a consideration that should be taken into account when designing probiotic treatments to reduce the impacts of infectious disease.


Biofilm Community function Pathogen resistance Microbial symbiont Synergy 



This research was supported by grants from the US Fish and Wildlife Service to JPS, SPL, and JEF, the University of California, Davis Academic Senate to SPL and JEF. A portion of the DNA sequencing work was supported by an NSF grant (DEB: 1146284) awarded to VJM. Valuable assistance was provided by Tara Roth; statistical advice was provided by Jarrett Byrnes, Kyle Edwards, and Rebecca Best.


  1. 1.
    Relman DA (2012) The human microbiome: ecosystem resilience and health. Nutr Rev 70:S2–S9. doi: 10.1111/j.1753-4887.2012.00489.x CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Makela MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T (2012) Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci USA 109(21):8334–8339. doi: 10.1073/pnas.1205624109
  3. 3.
    Robinson CJ, Bohannan BJM, Young VB (2010) From structure to function: the ecology of host-associated microbial communities. Microbiol Mol Biol R 74(3):453–476. doi: 10.1128/Mmbr.00014-10
  4. 4.
    Fierer N, Ferrenberg S, Flores GE, Gonzalez A, Kueneman J, Legg T, Lynch RC, McDonald D, Mihaljevic JR, O’Neill SP, Rhodes ME, Song SJ, Walters WA (2012) From animalcules to an ecosystem: application of ecological concepts to the human microbiome. Annu Rev Ecol Evol Syst 43:137–155. doi: 10.1146/annurev-ecolsys-110411-160307 CrossRefGoogle Scholar
  5. 5.
    Belden LK, Harris RN (2007) Infectious diseases in wildlife: the community ecology context. Front Ecol Environ 5(10):533–539. doi: 10.1890/060122 CrossRefGoogle Scholar
  6. 6.
    Kumaree KK, Akbar A, Anal AK (2015) Bioencapsulation and application of Lactobacillus plantarum isolated from catfish gut as an antimicrobial agent and additive in fish feed pellets. Ann Microbiol 65(3):1439–1445. doi: 10.1007/s13213-014-0982-0 CrossRefGoogle Scholar
  7. 7.
    Grzeskowiak L, Endo A, Beasley S, Salminen S (2015) Microbiota and probiotics in canine and feline welfare. Anaerobe 34:14–23. doi: 10.1016/j.anaerobe.2015.04.002 CrossRefPubMedGoogle Scholar
  8. 8.
    Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity research. Nature 412:72–76. doi: 10.1038/35083573 CrossRefPubMedGoogle Scholar
  9. 9.
    Kirwan L, Connolly J, Finn JA, Brophy C, Luscher A, Nyfeler D, Sebastia MT (2009) Diversity-interaction modeling: estimating contributions of species identities and interactions to ecosystem function. Ecology 90(8):2032–2038. doi: 10.1890/08-1684.1 CrossRefPubMedGoogle Scholar
  10. 10.
    Fox JW (2005) Interpreting the ‘selection effect’ of biodiversity on ecosystem function. Ecol Lett 8(8):846–856. doi: 10.1111/j.1461-0248.2005.00795.x CrossRefGoogle Scholar
  11. 11.
    Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annu Rev Ecol Evol Syst 45:471–493. doi: 10.1146/annurev-ecolsys-120213-091917 CrossRefGoogle Scholar
  12. 12.
    Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. Ecohealth 4(2):125–134. doi: 10.1007/s10393-007-0093-5 CrossRefGoogle Scholar
  13. 13.
    Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci USA 105:11466–11473. doi: 10.1073/pnas.0801921105 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, Cook D, Webb R, Alford RA, Skerratt LF, Speare R (2009) Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326(5952):582–585. doi: 10.1126/science.1176765 CrossRefPubMedGoogle Scholar
  15. 15.
    Bletz, M.C., Loudon, A.H., Becker, M.H., Bell, S.C., Woodhams, D.C., Minbiole, K.P., Harris, R.N. (2013) Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol Lett. doi: 10.1111/ele.12099
  16. 16.
    Harris RN, James TY, Lauer A, Simon MA, Patel A (2006) Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of Amphibian species. Ecohealth 3(1):53–56. doi: 10.1007/s10393-005-0009-1 CrossRefGoogle Scholar
  17. 17.
    Woodhams DC, Bletz M, Kueneman J, McKenzie V (2016) Managing amphibian disease with skin microbiota. Trends Microbiol 24(3):161–164. doi: 10.1016/j.tim.2015.12.010 CrossRefPubMedGoogle Scholar
  18. 18.
    Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, Lam BA, Woodhams DC, Briggs CJ, Vredenburg VT, Minbiole KP (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J 3(7):818–824. doi: 10.1038/ismej.2009.27 CrossRefPubMedGoogle Scholar
  19. 19.
    Becker, M.H., Walke, J.B., Cikanek, S., Savage, A.E., Mattheus, N., Santiago, C.N., Minbiole, K.P.C., Harris, R.N., Belden, L.K., Gratwicke, B. (2015) Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus. P. R. Soc. B. 282: 1805. doi: 10.1098/rspb.2014.2881
  20. 20.
    Jani AJ, Briggs CJ (2014) The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc Natl Acad Sci USA 111(47):E5049–E5058. doi: 10.1073/pnas.1412752111 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Longo, A.V., Savage, A.E., Hewson, I., Zamudio, K.R. (2015) Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians. Roy. Soc. Open. Sci. 2 (7). doi: 10.1098/rsos.140377
  22. 22.
    Becker, C.G., Rodriguez, D., Toledo, L.F., Longo, A.V., Lambertini, C., Correa, D.T., Leite, D.S., Haddad, C.F.B., Zamudio, K.R. (2014) Partitioning the net effect of host diversity on an emerging amphibian pathogen. P. R. Soc. B. 281: 1795. doi: 10.1098/Rspb.2014.1796
  23. 23.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108. doi: 10.1038/nrmicro821 CrossRefPubMedGoogle Scholar
  24. 24.
    Roth T, Foley J, Worth J, Piovia-Scott J, Pope K, Lawler S (2013) Bacterial flora on Cascades frogs in the Klamath mountains of California. Comp Immunol Microb 36(6):591–598. doi: 10.1016/j.cimid.2013.07.002 CrossRefGoogle Scholar
  25. 25.
    Lam BA, Walke JB, Vredenburg VT, Harris RN (2010) Proportion of individuals with anti-Batrachochytrium dendrobatidis skin bacteria is associated with population persistence in the frog Rana muscosa. Biol Conserv 143(2):529–531. doi: 10.1016/j.biocon.2009.11.015 CrossRefGoogle Scholar
  26. 26.
    Woodhams DC, Vredenburg VT, Simon M, Billheimer D, Shakhtour B, Shyr Y, Briggs CJ, Rollins-Smith LA, Harris RA (2007) Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa. Biol Conserv 138:390–398. doi: 10.1016/j.biocon.2007.05.004 CrossRefGoogle Scholar
  27. 27.
    Lauer A, Simon MA, Banning JL, Lam BA, Harris RN (2008) Diversity of cutaneous bacteria with antifungal activity isolated from female four-toed salamanders. ISME J 2(2):145–157. doi: 10.1038/ismej.2007.110 CrossRefPubMedGoogle Scholar
  28. 28.
    Flechas, S.V., Sarmiento, C., Cardenas, M.E., Medina, E.M., Restrepo, S., Amezquita, A. (2012) Surviving chytridiomycosis: differential anti-Batrachochytrium dendrobatidis activity in bacterial isolates from three lowland species of atelopus. Plos. One. 7 (9).  doi: 10.1371/journal.pone.0044832
  29. 29.
    Kueneman JG, Parfrey LW, Woodhams DC, Archer HM, Knight R, McKenzie VJ (2014) The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol 23(6):1238–1250. doi: 10.1111/mec.12510 CrossRefPubMedGoogle Scholar
  30. 30.
    McKenzie VJ, Bowers RM, Fierer N, Knight R, Lauber CL (2012) Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J 6(3):588–596. doi: 10.1038/ismej.2011.129 CrossRefPubMedGoogle Scholar
  31. 31.
    Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110(4):449–460. doi: 10.1007/s004420050180 CrossRefPubMedGoogle Scholar
  32. 32.
    Loudon, A.H., Holland, J.A., Umile, T.P., Burzynski, E.A., Minbiole, K.P.C., Harris, R.N. (2014) Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front. Microbiol. 5. doi: 10.3389/Fmicb.2014.00441
  33. 33.
    IUCN: IUCN Red List. Version 2015.2. (2015).
  34. 34.
    Fellers GM, Pope KL, Stead JE, Koo MS, Welsh HH (2008) Turning population trend monitoring into active conservation: can we save the Cascades frog (Rana Cascadae) in the Lassen region of California? Herpetol Conserv Bio 3(1):28–39Google Scholar
  35. 35.
    De León ME, Vredenburg VT, Piovia-Scott J (2016) Recent emergence of a chytrid fungal pathogen in California Cascades frogs (Rana Cascadae). EcoHealth. doi: 10.1007/s10393-016-1201-1
  36. 36.
    Piovia-Scott J, Pope K, Worth SJ, Rosenblum EB, Poorten TJ, Refsnider J, Rollins-Smith LA, Reinert LK, Wells HL, Rejmanek D, Lawler SP, Foley JE (2015) Correlates of virulence in a frog-killing fungal pathogen: evidence from a California amphibian decline. ISME J 9:1570–1578. doi: 10.1038/ismej.2014.241 CrossRefPubMedGoogle Scholar
  37. 37.
    Antwis RE, Preziosi RF, Harrison XA, Garner TWJ (2015) Amphibian symbiotic bacteria do not show a universal ability to inhibit growth of the global panzootic lineage of Batrachochytrium dendrobatidis. Appl Environ Microb 81(11):3706–3711. doi: 10.1128/Aem.00010-15 CrossRefGoogle Scholar
  38. 38.
    Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol R 64(4):847. doi: 10.1128/Mmbr.64.4.847-867.2000 CrossRefGoogle Scholar
  39. 39.
    Merritt JH, Kadouri DE, O’Toole GA (2011) Growing and analyzing static biofilms. Current Procols Microbiol 22:1B1.1–1B.1.18. doi: 10.1002/9780471729259.mc01b01s22 CrossRefGoogle Scholar
  40. 40.
    Woodhams DC, Alford RA, Briggs CJ, Johnson M, Rollins-Smith LA (2008) Life-history trade-offs influence disease in changing climates: strategies of an amphibian pathogen. Ecology 89(6):1627–1639CrossRefPubMedGoogle Scholar
  41. 41.
    Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Organ 60(2):141–148. doi: 10.3354/dao060141 CrossRefPubMedGoogle Scholar
  42. 42.
    Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L, Obendorf D, Dalton A, Kriger K, Hero M, Hines H, Phillott R, Campbell R, Marantelli G, Gleason F, Colling A (2007) Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis Aquat Organ 73(3):175–192. doi: 10.3354/dao073175 CrossRefPubMedGoogle Scholar
  43. 43.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. doi: 10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6(3):610–618. doi: 10.1038/ismej.2011.139 CrossRefPubMedGoogle Scholar
  45. 45.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microb 72(7):5069–5072. doi: 10.1128/Aem.03006-05 CrossRefGoogle Scholar
  46. 46.
    Connolly J, Bell T, Bolger T, Brophy C, Carnus T, Finn JA, Kirwan L, Isbell F, Levine J, Lüscher A, Picasso V, Roscher C, Sebastia MT, Suter M, Weigelt A, Chamberlain S (2013) An improved model to predict the effects of changing biodiversity levels on ecosystem function. J Ecol 101(2):344–355. doi: 10.1111/1365-2745.12052 CrossRefGoogle Scholar
  47. 47.
    Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol R 75(4):583. doi: 10.1128/Mmbr.00020-11 CrossRefGoogle Scholar
  48. 48.
    Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8(1):15–25. doi: 10.1038/nrmicro2259 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Jousset A, Becker J, Chatterjee S, Karlovsky P, Scheu S, Eisenhauer N (2014) Biodiversity and species identity shape the antifungal activity of bacterial communities. Ecology 95(5):1184–1190. doi: 10.1890/13-1215.1 CrossRefPubMedGoogle Scholar
  50. 50.
    Fraune S, Anton-Erxleben F, Augustin R, Franzenburg S, Knop M, Schroder K, Willoweit-Ohl D, Bosch TCG (2015) Bacteria-bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance. ISME J 9(7):1543–1556. doi: 10.1038/ismej.2014.239 CrossRefPubMedGoogle Scholar
  51. 51.
    Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96(4):1463–1468. doi: 10.1073/pnas.96.4.1463 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Eisenhauer N, Schulz W, Scheu S, Jousset A (2013) Niche dimensionality links biodiversity and invasibility of microbial communities. Funct Ecol 27(1):282–288. doi: 10.1111/j.1365-2435.2012.02060.x CrossRefGoogle Scholar
  53. 53.
    Becker MH, Brucker RM, Schwantes CR, Harris RN, Minbiole KPC (2009) The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus. Appl Environ Microb 75(21):6635–6638. doi: 10.1128/Aem.01294-09 CrossRefGoogle Scholar
  54. 54.
    Woodhams, D.C., Brandt, H., Baumgartner, S., Kielgast, J., Kupfer, E., Tobler, U., Davis, L.R., Schmidt, B.R., Bel, C., Hodel, S., Knight, R., McKenzie, V. (2014) Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. Plos. One. 9 (4) doi: 10.1371/journal.pone.0096375
  55. 55.
    Kim JG, Park YK, Kim SU, Choi D, Nahm BH, Moon JS, Reader JS, Farrand SK, Hwang IY (2006) Bases of biocontrol: sequence predicts synthesis and mode of action of agrocin 84, the Trojan Horse antibiotic that controls crown gall. Proc Natl Acad Sci U S A 103(23):8846–8851. doi: 10.1073/pnas.0602965103 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci U S A 100:14555–14561. doi: 10.1073/pnas.1934677100 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Myers JM, Ramsey JP, Blackman AL, Nichols AE, Minbiole KPC, Harris RN (2012) Synergistic inhibition of the lethal fungal pathogen Batrachochytrium dendrobatidis: the combined effect of symbiotic bacterial metabolites and antimicrobial peptides of the frog Rana muscosa. J Chem Ecol 38(8):958–965. doi: 10.1007/s10886-012-0170-2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jonah Piovia-Scott
    • 1
    Email author
  • Daniel Rejmanek
    • 2
  • Douglas C. Woodhams
    • 3
  • S. Joy Worth
    • 2
  • Heather Kenny
    • 1
  • Valerie McKenzie
    • 4
  • Sharon P. Lawler
    • 5
  • Janet E. Foley
    • 2
  1. 1.School of Biological SciencesWashington State UniversityVancouverUSA
  2. 2.Department of Veterinary Medicine and EpidemiologyUniversity of CaliforniaDavisUSA
  3. 3.Department of BiologyUniversity of Massachusetts BostonBostonUSA
  4. 4.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA
  5. 5.Department of EntomologyUniversity of CaliforniaDavisUSA

Personalised recommendations