Skip to main content

Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities

Abstract

Peatlands play an important role in global climate change through sequestration of atmospheric CO2. Climate-driven changes in the structure of fungal communities in boreal peatlands that favor saprotrophic fungi can substantially impact carbon dynamics and nutrient cycling in these crucial ecosystems. In a mesocosm study using a full factorial design, 100 intact peat monoliths, complete with living Sphagnum and above-ground vascular vegetation, were subjected to three climate change variables (increased temperature, reduced water table, and elevated CO2 concentrations). Peat litterbags were placed in mesocosms, and fungal communities in litterbags were monitored over 12 months to assess the impacts of climate change variables on peat-inhabiting fungi. Changes in fungal richness, diversity, and community composition were assessed using Illumina MiSeq sequencing of ribosomal DNA (rDNA). While general fungal richness reduced under warming conditions, Ascomycota exhibited higher diversity under increased temperature treatments over the course of the experiment. Both increased temperature and lowered water table position drove shifts in fungal community composition with a strong positive effect on endophytic and mycorrhizal fungi (including one operational taxonomic unit (OTU) tentatively identified as Barrenia panicia) and different groups of saprotrophs identified as Mortierella, Galerina, and Mycena. These shifts were observed during a predicted degradative succession in the decomposer community as different carbon substrates became available. Since fungi play a central role in peatland communities, increased abundances of saprotrophic fungi under warming conditions, at the expense of reduced fungal richness overall, may increase decomposition rates under future climate scenarios and could potentially aggravate the impacts of climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

BLAST:

Basic Local Alignment Search Tool

LSU:

Large subunit

NGS:

Next generation sequencing

OTU:

Operational taxonomic unit

PCR:

Polymerase chain reaction

rDNA:

Ribosomal DNA

PCA:

Principal component analysis

ANOVA:

Analysis of variance

ALDEx:

ANOVA-like differential expression procedure

MiRKAT:

Microbiome Regression-based Kernel Association Test

References

  1. Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos 81:368–388

    Article  Google Scholar 

  2. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  PubMed  Google Scholar 

  3. Moore T, Basiliko N (2006) Decomposition in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Ecological studies, vol 188. Springer, Berlin, pp 125–143

    Chapter  Google Scholar 

  4. IPCC (2014) Climate change 2013: the physical science basis: Working Group I Contribution to the Fifth Assessment Report of the International Panel on Climate Change. Cambridge University Press, London

    Google Scholar 

  5. Frolking S, Roulet NT (2007) Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Glob Chang Biol 13:1079–1088

    Article  Google Scholar 

  6. Williams RT, Crawford RL (1983) Microbial diversity of Minnesota peatlands. Microb Ecol 9:201–214

    CAS  Article  PubMed  Google Scholar 

  7. Andersen R, Chapman SS, Artez RRE (2013) Microbial communities in natural and disturbed peatlands: a review. Soil Biol Biochem 57:979–994

    CAS  Article  Google Scholar 

  8. Treseder KK, Marusenko Y, Romero-Olivares AL, Maltz MR (2016) Experimental warming alters potential function of the fungal community in boreal forest. Glob Chang Biol. doi:10.1111/gcb.13238

    PubMed  Google Scholar 

  9. Allison SD, Treseder KK (2011) Climate change feedbacks to microbial decomposition in boreal soils. Fungal Ecol 4:362–374

    Article  Google Scholar 

  10. Kasurinen A, Peltonen PA, Holopainen JK, Vapaauori E, Holocaine T (2007) Leaf litter under changing climate: will increasing levels of CO2 and O3 affect decomposition and nutrient cycling processes? Dyn Soil Dyn Plant 1:58–67

    Google Scholar 

  11. Trinder CJ, Artz RRE, Johnson D (2008) Interactions between fungal community structure, litter decomposition and depth of water-table in a cutover peatland. FEMS Microbiol Ecol 64:433–448

    CAS  Article  PubMed  Google Scholar 

  12. Yuste JC, Penuelas J, Estiarte M et al (2011) Drought‐resistant fungi control soil organic matter decomposition and its response to temperature. Glob Chang Biol 17:1475–1486

    Article  Google Scholar 

  13. Bradford MA, Davies CA, Frey SD et al (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327

    Article  PubMed  Google Scholar 

  14. Drigo B, Kowalchuk GA, Van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679

    Article  Google Scholar 

  15. Peltoniemi K, Fritze H, Laiho R (2009) Response of fungal and actinobacterial communities to water-level drawdown in boreal peatland sites. Soil Biol Biochem 41:1902–1914

    CAS  Article  Google Scholar 

  16. Thormann MN, Currah RS, Bayley S (1999) The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada. Wetlands 19:438–450

    Article  Google Scholar 

  17. Thormann MN, Currah RS, Bayley SE (2004) Patterns of distribution of microfungi in decomposing bog and fen plants. Can J Bot 82:710–710

    Article  Google Scholar 

  18. Thorn RG, Reddy CA, Harris D, Paul EA (1996) Isolation of saprophytic basidiomycetes from soil. Appl Environ Microbiol 62:4288–4292

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tedersoo L, Lindahl BD (2016) Fungal identification biases in microbiome project. Environ Microbiol Rep. doi:10.1111/1758-2229.12438

    PubMed  Google Scholar 

  20. Elliott DR, Caporn SJM, Nwaishi F, Nilsson RH, Sen R (2015) Bacterial and fungal communities in a degraded ombrotrophic peatland undergoing natural and managed re-vegetation. PLoS One 10(5):e0124726

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dieleman CM, Branfireun BA, McLaughlin JW, Lindo Z (2015) Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. Glob Chang Biol 21:388–395

    Article  PubMed  Google Scholar 

  22. Dieleman CM, Lindo Z, McLaughlin JW, Craig AE, Branfireun BA (2016) Climate change effects on peatland decomposition and porewater dissolved organic carbon biogeochemistry. Biogeochemistry. doi:10.1007/s10533-016-0214-8

    Google Scholar 

  23. Lindo Z (2015) Warming favours small-bodied organisms through enhanced reproduction and compositional shifts in belowground systems. Soil Biol Biochem 91:271–278

    CAS  Article  Google Scholar 

  24. Asemaninejad A, Weerasuriya N, Gloor GB, Lindo Z, Thorn RG (2016) New primers for discovering fungal diversity using nuclear large ribosomal DNA. PLoS One 11(7):e0159043

    Article  PubMed  PubMed Central  Google Scholar 

  25. Webster KL, McLaughlin JW (2010) Importance of the water table in controlling dissolved carbon along a fen nutrient gradient. Soil Sci Soc Am J 74:2254–2266

    CAS  Article  Google Scholar 

  26. Faubert P, Rochefort L (2002) Response of peatland mosses to burial by wind-dispersed peat. Bryologist 105:96–103

    Article  Google Scholar 

  27. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinf 13:31

    CAS  Article  Google Scholar 

  28. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    CAS  Article  PubMed  Google Scholar 

  30. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Lan Y, Wang Q, Cole JR, Rosen GL (2012) Using the RDP classifier to predict taxonomic novelty and reduce the search space for finding novel organisms. PLoS One 7:e32491

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Heck KL Jr, van Belle G, Simberloff D (1975) Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56(6):1459–146

    Article  Google Scholar 

  33. Statistica (version 7.0) StatSoft Inc (2004) Statistica (Data Analysis Software System), Version 7.0. Tulsa, USA

  34. Aitchison J, Egozcue JJ (2005) Compositional data analysis: where are we and where should we be heading? Math Geol 37:829–850

    Article  Google Scholar 

  35. Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, Bahler J (2015) Proportionality: a valid alternative to correlation for relative data. PLoS Comput Biol 11(3):e1004075

    Article  PubMed  PubMed Central  Google Scholar 

  36. van den Boogaart KG, Tolosana-Delgado R (2008) “Compositions”: a unified r package to analyze compositional data. Comput Geosci 34:320–338

    Article  Google Scholar 

  37. Zhao N, Chen J, Carroll IM et al (2015) Testing in microbiome-profiling studies with MiRKAT, the Microbiome Regression-Based Kernel Association Test. Am J Hum Genet 96:797–807

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Fernandes AD, Macklaim JM, Linn TG, Reid G, Gloor GB (2013) ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One 8(7):e67019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  40. Belyea LR (1996) Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland. Oikos 77:529–539

    Article  Google Scholar 

  41. Janssens IA, Davidson EA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  PubMed  Google Scholar 

  42. Wang H, Richardson CJ, Ho M (2015) Dual controls on carbon loss during drought in peatlands. Nat Clim Chang 5:584–587

    CAS  Article  Google Scholar 

  43. Osono T (2005) Colonization and succession of fungi during decomposition of Swida controversa leaf litter. Mycologia 97:589–597

    Article  PubMed  Google Scholar 

  44. Adair EC, Parton WJ, Del Grosso SJ et al (2008) Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Glob Chang Biol 14:2636–2660

    Google Scholar 

  45. Moore JC, Berlow EL, Coleman DC et al (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600

    Article  Google Scholar 

  46. Talley SM, Coley PD, Kursar TA (2002) The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West. BMC Ecol 2:1–11

    Article  Google Scholar 

  47. Blankinship JC, Niklaus PA, Hungate BA (2011) A meta-analysis of responses of soil biota to global change. Oecologia 165:553–565

    Article  PubMed  Google Scholar 

  48. Morgado L, Semenova TA, Welker JM, Walker MD, Smets E, Geml JO (2015) Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska. Glob Chang Biol 21:959–972

    Article  PubMed  Google Scholar 

  49. Allison SD, Treseder KK (2008) Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob Chang Biol 14:2898–2909

    Article  Google Scholar 

  50. Allison SD, McGuire KL, Treseder KK (2010) Resistance of microbial and soil properties to warming treatment seven years after boreal fire. Soil Biol Biochem 42:1872–1878

    CAS  Article  Google Scholar 

  51. Rousk J, Bååth E (2011) Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiol Ecol 78:17–30

    CAS  Article  PubMed  Google Scholar 

  52. Jaatinen K, Laiho R, Vuorenmaa A et al (2008) Microbial communities and soil respiration along a water-level gradient in a northern boreal fen. Environ Microbiol 10:339–353

    CAS  Article  PubMed  Google Scholar 

  53. Philben M, Holmquist J, MacDonald G, Duan D, Kaiser K, Benner R (2015) Temperature, oxygen, and vegetation controls on decomposition in a James Bay peatland. Glob Biogeochem Cycles 29:729–743

    CAS  Article  Google Scholar 

  54. Gleason FH, Letcher PM, McGee PA (2004) Some Chytridiomycota in soil recover from drying and high temperatures. Mycol Res 108:583–589

    Article  PubMed  Google Scholar 

  55. Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    CAS  Article  PubMed  Google Scholar 

  56. Bever JD, Platt TG, Morton ER (2012) Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 66:265–283

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Dean SL, Warnock DD, Litvak ME, Porras-Alfaro A, Sinsabaugh R (2015) Root-associated fungal community response to drought-associated changes in vegetation community. Mycologia 107:1089–1104

    Article  PubMed  Google Scholar 

  58. Ramos-Zapata J, Orellana R, Guadarrama P, Medina-Peralta S (2009) Contribution of mycorrhizae to early growth and phosphorus uptake by a neotropical palm. J Plant Nutr 32:855–866

    CAS  Article  Google Scholar 

  59. Mayerhofer MS, Kernaghan G, Harper KA (2013) The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128

    Article  PubMed  Google Scholar 

  60. Hribljan JA, Kane ES, Pypker TG, Chimner RA (2014) The effect of long-term water table manipulations on dissolved organic carbon dynamics in a poor fen peatland. J Geophys Res Biogeosci 119:577–595

    CAS  Article  Google Scholar 

  61. Kane ES, Mazzoleni LR, Kratz CJ et al (2014) Peat porewater dissolved organic carbon concentration and lability increase with warming: a field temperature manipulation experiment in a poor-fen. Biogeochemistry 119:161–178

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank two anonymous reviewers for their thoughtful and constructive comments on previous versions of this manuscript. We also thank Dr. Charmaine Dean, Dean of the Faculty of Science, University of Western Ontario, for her financial assistance to use Biotron and the financial support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant program awarded to Dr. Zoë Lindo and Dr. Brian Branfireun. We are grateful to Dr. Greg Gloor (Western University, Biochemistry) for bioinformatics and statistical assistance to and David Carter (Roberts Research Institute) for conducting Illumina sequencing. We thank the volunteers and work study students for their help in the lab. Discussion with Dr. Hugh Henry, Dr. Marc-Andre Lachance, Nimalka Weerasuriya, and Dr. Catherine Dieleman are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoë Lindo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Changes in the relative frequencies of Ascomycota a and other fungal community b at higher taxonomic levels (classes) observed at different time points of the experiment. (PDF 130 kb)

(PDF 138 kb)

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asemaninejad, A., Thorn, R.G. & Lindo, Z. Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities. Microb Ecol 73, 521–531 (2017). https://doi.org/10.1007/s00248-016-0875-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0875-9

Keywords

  • Ascomycota
  • Climate change
  • Degradative succession
  • Fungi
  • Illumina MiSeq
  • Peatlands