Microbial Ecology

, Volume 73, Issue 2, pp 310–320 | Cite as

Diversity and Structure of Fungal Communities in Neotropical Rainforest Soils: The Effect of Host Recurrence

  • Heidy Schimann
  • Cyrille Bach
  • Juliette Lengelle
  • Eliane Louisanna
  • Sandra Barantal
  • Claude Murat
  • Marc Buée
Fungal Microbiology

Abstract

The patterns of the distribution of fungal species and their potential interactions with trees remain understudied in Neotropical rainforests, which harbor more than 16,000 tree species, mostly dominated by endomycorrhizal trees. Our hypothesis was that tree species shape the non-mycorrhizal fungal assemblages in soil and litter and that the diversity of fungal communities in these two compartments is partly dependent on the coverage of trees in the Neotropical rainforest. In French Guiana, a long-term plantation and a natural forest were selected to test this hypothesis. Fungal ITS1 regions were sequenced from soil and litter samples from within the vicinity of tree species. A broad range of fungal taxa was found, with 42 orders and 14 classes. Significant spatial heterogeneity in the fungal communities was found without strong variation in the species richness and evenness among the tree plots. However, tree species shaped the fungal assemblages in the soil and litter, explaining up to 18 % of the variation among the communities in the natural forest. These results demonstrate that vegetation cover has an important effect on the structure of fungal assemblages inhabiting the soil and litter in Amazonian forests, illustrating the relative impact of deterministic processes on fungal community structures in these highly diverse ecosystems.

Keywords

Fungal communities Amazonian forest Host recurrence Soil Litter Second-generation sequencing 

Supplementary material

248_2016_839_MOESM1_ESM.docx (1.7 mb)
ESM 1(DOCX 1762 kb)
248_2016_839_MOESM2_ESM.pdf (1.4 mb)
ESM 2(PDF 1429 kb)
248_2016_839_MOESM3_ESM.tiff (1.2 mb)
ESM 3(TIFF 1252 kb)

References

  1. 1.
    Tedersoo L, Nara K (2010) General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi. New Phytol 185:351–354. doi:10.1111/j.1469-8137.2009.03134.x CrossRefPubMedGoogle Scholar
  2. 2.
    Tedersoo L, Bahram M, Polme S et al (2014) Global diversity and geography of soil fungi. Science 346:1256688–1256688. doi:10.1126/science.1256688 CrossRefPubMedGoogle Scholar
  3. 3.
    Rincón A, Santamaría-Pérez B, Rabasa SG et al (2015) Compartmentalized and contrasted response of ectomycorrhizal and soil fungal communities of Scots pine forests along elevation gradients in France and Spain. Environ Microbiol 17:3009–3024. doi:10.1111/1462-2920.12894 CrossRefPubMedGoogle Scholar
  4. 4.
    Arnold AE, Maynard Z, Gilbert GS et al (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274. doi:10.1046/j.1461-0248.2000.00159.x CrossRefGoogle Scholar
  5. 5.
    Kernaghan G, Patriquin G (2011) Host associations between fungal root endophytes and boreal trees. Microb Ecol 62:460–473. doi:10.1007/s00248-011-9851-6 CrossRefPubMedGoogle Scholar
  6. 6.
    Sun X, Ding Q, Hyde KD, Guo LD (2012) Community structure and preference of endophytic fungi of three woody plants in a mixed forest. Fungal Ecol 5:624–632. doi:10.1016/j.funeco.2012.04.001 CrossRefGoogle Scholar
  7. 7.
    Toljander YK, Lindahl BD, Holmer L, Högberg NOS (2006) Environmental fluctuations facilitate species co-existence and increase decomposition in communities of wood decay fungi. Oecologia 148:625–631. doi:10.1007/s00442-006-0406-3 CrossRefPubMedGoogle Scholar
  8. 8.
    Peay KG, Schubert MG, Nguyen NH, Bruns TD (2012) Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol Ecol 21:4122–4136. doi:10.1111/j.1365-294X.2012.05666.x CrossRefPubMedGoogle Scholar
  9. 9.
    Wolfe BE, Pringle A (2011) Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus. ISME J 6:745–755. doi:10.1038/ismej.2011.155 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423. doi:10.1111/nph.13288 CrossRefPubMedGoogle Scholar
  11. 11.
    Davison J, Moora M, Öpik M et al (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973. doi:10.1126/science.aab1161 CrossRefPubMedGoogle Scholar
  12. 12.
    Dahlberg A (2001) Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol 150:555–562. doi:10.1046/j.1469-8137.2001.00142.x CrossRefGoogle Scholar
  13. 13.
    Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytol 174:430–440. doi:10.1111/j.1469-8137.2007.02016.x CrossRefPubMedGoogle Scholar
  14. 14.
    Tedersoo L, Mett M, Ishida TA, Bahram M (2013) Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. New Phytol 199:822–831. doi:10.1111/nph.12328 CrossRefPubMedGoogle Scholar
  15. 15.
    Taylor DL, Hollingsworth TN, Mcfarland JW (2014) A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol Monogr 84:3–20. doi:10.1890/12-1693.1 CrossRefGoogle Scholar
  16. 16.
    Kerekes J, Kaspari M, Stevenson B et al (2013) Nutrient enrichment increased species richness of leaf litter fungal assemblages in a tropical forest. Mol Ecol 22:2827–2838. doi:10.1111/mec.12259 CrossRefPubMedGoogle Scholar
  17. 17.
    Branco S, Bruns TD, Singleton I (2013) Fungi at a small scale: spatial zonation of fungal assemblages around single trees. PLoS ONE 8:e78295–10. doi:10.1371/journal.pone.0078295 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Peay KG, Baraloto C, Fine PV (2013) Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J 7:1852–1861. doi:10.1038/ismej.2013.66 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhou D, Hyde KD (2001) Host-specificity, host-exclusivity, and host-recurrence in saprobic fungi. Mycol Res 105:1449–1457. doi:10.1017/S0953756201004713 CrossRefGoogle Scholar
  20. 20.
    Gilbert GS, Ferrer A, Carranza J (2002) Polypore fungal diversity and host density in a moist tropical forest. Biodivers Conserv 11:947–957. doi:10.1023/A:1015896204113 CrossRefGoogle Scholar
  21. 21.
    Öpik M, Metsis M, Daniell TJ et al (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437. doi:10.1111/j.1469-8137.2009.02920.x CrossRefPubMedGoogle Scholar
  22. 22.
    Liu X, Liang M, Etienne RS et al (2011) Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest. Ecol Lett 15:111–118. doi:10.1111/j.1461-0248.2011.01715.x CrossRefPubMedGoogle Scholar
  23. 23.
    ter Steege H, Pitman NCA, Sabatier D et al (2013) Hyperdominance in the Amazonian tree flora. Science 342:1243092–1243092. doi:10.1126/science.1243092 CrossRefPubMedGoogle Scholar
  24. 24.
    Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 94:210. doi:10.2307/3761797 CrossRefPubMedGoogle Scholar
  25. 25.
    Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549. doi:10.1890/05-1459 CrossRefPubMedGoogle Scholar
  26. 26.
    Lindblad I (2001) Diversity of poroid and some corticoid wood-inhabiting fungi along the rainfall gradient in tropical forests, Costa Rica. J Trop Ecol 17:1–18. doi:10.1017/S0266467401001249 CrossRefGoogle Scholar
  27. 27.
    Paulus BC, Kanowski J, Gadek PA, Hyde KD (2006) Diversity and distribution of saprobic microfungi in leaf litter of an Australian tropical rainforest. Mycol Res 110:1441–1454. doi:10.1016/j.mycres.2006.09.002 CrossRefPubMedGoogle Scholar
  28. 28.
    Tedersoo L, Nilsson RH, Abarenkov K et al (2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188:291–301. doi:10.1111/j.1469-8137.2010.03373.x CrossRefPubMedGoogle Scholar
  29. 29.
    Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. AEM 75:7537–7541. doi:10.1128/AEM.01541-09 CrossRefGoogle Scholar
  30. 30.
    Bréchet L, Ponton S, Roy J et al (2009) Do tree species characteristics influence soil respiration in tropical forests? A test based on 16 tree species planted in monospecific plots. Plant Soil 319:235–246. doi:10.1007/s11104-008-9866-z CrossRefGoogle Scholar
  31. 31.
    Hättenschwiler S, Aeschlimann B, Coûteaux M-M et al (2008) High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol 179:165–175. doi:10.1111/j.1469-8137.2008.02438.x CrossRefPubMedGoogle Scholar
  32. 32.
    Altschul SF, Gish W, Miller W, Myers EW (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  33. 33.
    Coince A, Caël O, Bach C et al (2013) Below-ground fine-scale distribution and soil versus fine root detection of fungal and soil oomycete communities in a French beech forest. Fungal Ecol 6:223–235. doi:10.1016/j.funeco.2013.01.002 CrossRefGoogle Scholar
  34. 34.
    Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. PNAS 109:6241–6246. doi:10.1073/pnas.1117018109 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi:10.1093/bioinformatics/btq461 CrossRefPubMedGoogle Scholar
  36. 36.
    Kõljalg U, Nilsson RH, Abarenkov K et al (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277. doi:10.1111/mec.12481 CrossRefPubMedGoogle Scholar
  37. 37.
    Piepenbring M, Hofmann TA, Unterseher M, Kost G (2011) Species richness of plants and fungi in western Panama: towards a fungal inventory in the tropics. Biodivers Conserv 21:2181–2193. doi:10.1007/s10531-011-0213-y CrossRefGoogle Scholar
  38. 38.
    Balzer S, Malde K, Jonassen I (2011) Systematic exploration of error sources in pyrosequencing flowgram data. Bioinformatics 27:i304–i309. doi:10.1093/bioinformatics/btr251 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Béreau M, Gazel M, Garbaye J (1997) Les symbioses mycorhiziennes des arbres de la forêt tropicale humide de Guyane Française. Can J Bot 75:711–716. doi:10.1139/b97-080 CrossRefGoogle Scholar
  40. 40.
    Chao A, Chazdon RL, Colwell RK, Shen T-J (2006) Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62:361–371. doi:10.1111/j.1541-0420.2005.00489.x CrossRefPubMedGoogle Scholar
  41. 41.
    Legendre P, Gallagher E (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi:10.1007/s004420100716 CrossRefGoogle Scholar
  42. 42.
    Kembel SW, Mueller RC (2014) Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities 1. Botany 92:303–311. doi:10.1139/cjb-2013-0194 CrossRefGoogle Scholar
  43. 43.
    Roy M, Rochet J, Manzi S et al (2013) What determines Alnus-associated ectomycorrhizal community diversity and specificity? A comparison of host and habitat effects at a regional scale. New Phytol 198:1228–1238. doi:10.1111/nph.12212 CrossRefPubMedGoogle Scholar
  44. 44.
    van der Heijden MG, de Bruin S, Luckerhoff L, et al. (2015) A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. The ISME Journal 1–11. doi: 10.1038/ismej.2015.120.
  45. 45.
    Coince A, Cordier T, Lengellé J et al (2014) Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns. PLoS ONE 9:e100668–10. doi:10.1371/journal.pone.0100668 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565. doi:10.1111/j.1365-294X.2010.04898.x CrossRefPubMedGoogle Scholar
  47. 47.
    McGuire KL, Fierer N, Bateman C et al (2011) Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation. Microb Ecol 63:804–812. doi:10.1007/s00248-011-9973-x CrossRefPubMedGoogle Scholar
  48. 48.
    Buée M, Reich M, Murat C et al (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456. doi:10.1111/j.1469-8137.2009.03003.x CrossRefPubMedGoogle Scholar
  49. 49.
    Jumpponen A, Jones KL, Blair J (2010) Vertical distribution of fungal communities in tallgrass prairie soil. Mycologia 102:1027–1041. doi:10.3852/09-316 CrossRefPubMedGoogle Scholar
  50. 50.
    Suz LM, Barsoum N, Benham S et al (2014) Environmental drivers of ectomycorrhizal communities in Europe’s temperate oak forests. Mol Ecol 23:5628–5644. doi:10.1111/mec.12947 CrossRefPubMedGoogle Scholar
  51. 51.
    Daghino S, Murat C, Sizzano E et al (2012) Fungal diversity is Not determined by mineral and chemical differences in serpentine substrates. PLoS ONE 7:e44233–13. doi:10.1371/journal.pone.0044233 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Orgiazzi A, Lumini E, Nilsson RH et al (2012) Unravelling soil fungal communities from different Mediterranean land-use backgrounds. PLoS ONE 7:e34847–e34849. doi:10.1371/journal.pone.0034847 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Arfi Y, Buée M, Marchand C et al (2011) Multiple markers pyrosequencing reveals highly diverse and host-specific fungal communities on the mangrove trees avicennia marina and rhizophora stylosa. FEMS Microb Ecol 79:433–444. doi:10.1111/j.1574-6941.2011.01236.x CrossRefGoogle Scholar
  54. 54.
    Fukami T, Dickie IA, Paula Wilkie J et al (2010) Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett 13:675–684. doi:10.1111/j.1461-0248.2010.01465.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.INRA, UMR Ecology of Guiana Forests (AgroParisTech, CNRS, CIRADUniversité des Antilles, Université de Guyane)KourouFrance
  2. 2.INRA, UMR Interactions Arbres-MicroorganismsUniversité de LorraineChampenouxFrance
  3. 3.Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche en Environnement et MatériauxUniversité de Pau et Pays de l’AdourPauFrance

Personalised recommendations