Microbial Ecology

, Volume 73, Issue 1, pp 188–200 | Cite as

Flowers and Wild Megachilid Bees Share Microbes

  • Quinn S. McFrederickEmail author
  • Jason M. Thomas
  • John L. Neff
  • Hoang Q. Vuong
  • Kaleigh A. Russell
  • Amanda R. Hale
  • Ulrich G. Mueller
Invertebrate Microbiology


Transmission pathways have fundamental influence on microbial symbiont persistence and evolution. For example, the core gut microbiome of honey bees is transmitted socially and via hive surfaces, but some non-core bacteria associated with honey bees are also found on flowers, and these bacteria may therefore be transmitted indirectly between bees via flowers. Here, we test whether multiple flower and wild megachilid bee species share microbes, which would suggest that flowers may act as hubs of microbial transmission. We sampled the microbiomes of flowers (either bagged to exclude bees or open to allow bee visitation), adults, and larvae of seven megachilid bee species and their pollen provisions. We found a Lactobacillus operational taxonomic unit (OTU) in all samples but in the highest relative and absolute abundances in adult and larval bee guts and pollen provisions. The presence of the same bacterial types in open and bagged flowers, pollen provisions, and bees supports the hypothesis that flowers act as hubs of transmission of these bacteria between bees. The presence of bee-associated bacteria in flowers that have not been visited by bees suggests that these bacteria may also be transmitted to flowers via plant surfaces, the air, or minute insect vectors such as thrips. Phylogenetic analyses of nearly full-length 16S rRNA gene sequences indicated that the Lactobacillus OTU dominating in flower- and megachilid-associated microbiomes is monophyletic, and we propose the name Lactobacillus micheneri sp. nov. for this bacterium.


Lactobacillus micheneri Gilliamella Arsenophonus Flower microbes Floral transmission Wild bees 



The work was supported by the National Science Foundation under award no. PRFB-1003133 awarded to QSM and award DEB-0919519 to UGM and by UC Riverside initial complement funds to QSM. The Texas Ecolab provided access to private land and funding for fieldwork and sequencing. We especially thank Mike and MaryAnn Johansen for access to their Ecolab property. We thank Kirk E Anderson, Peter Graystock, and Jason Rothman for the helpful comments on an earlier draft of the manuscript. We thank Pearl Le and Duane Kim for assisting with the bioinformatic analyses.

Supplementary material

248_2016_838_MOESM1_ESM.pdf (2.1 mb)
ESM 1 (PDF 2138 kb)
248_2016_838_MOESM2_ESM.xlsx (685 kb)
ESM 2 (XLSX 684 kb)


  1. 1.
    Goodrich JK, Davenport ER, Waters JL et al (2016) Cross-species comparisons of host genetic associations with the microbiome. Science 352:532–535. doi: 10.1126/science.aad9379 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Moeller AH, Caro-Quintero A, Mjungu D et al (2016) Cospeciation of gut microbiota with hominids. Science 353:380–382. doi: 10.1126/science.aaf3951 CrossRefPubMedGoogle Scholar
  3. 3.
    Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735. doi: 10.1111/1574-6976.12025 CrossRefPubMedGoogle Scholar
  4. 4.
    Chaston J, Goodrich-Blair H (2010) Common trends in mutualism revealed by model associations between invertebrates and bacteria. FEMS Microbiol Rev 34:41–58. doi: 10.1111/j.1574-6976.2009.00193.x CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sachs J, Mueller U, Wilcox T, Bull J (2004) The evolution of cooperation. Q Rev Biol 79:135–160CrossRefPubMedGoogle Scholar
  6. 6.
    Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751. doi: 10.1038/nrmicro1969 CrossRefPubMedGoogle Scholar
  7. 7.
    Smith CC, Mueller UG (2015) Sexual transmission of beneficial microbes. Trends Ecol Evol 30:438–440. doi: 10.1016/j.tree.2015.05.006 CrossRefPubMedGoogle Scholar
  8. 8.
    Kikuchi Y, Hosokawa T, Fukatsu T (2007) Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol 73:4308–4316. doi: 10.1128/AEM.00067-07 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Martinson VG, Moy J, Moran NA (2012) Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol 78:2830–2840. doi: 10.1128/AEM.07810-11 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Koch H, Schmid-Hempel P (2011) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci 108:19288–19292. doi: 10.1073/pnas.1110474108 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Powell JE, Martinson VG, Urban-Mead K, Moran NA (2014) Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl Environ Microbiol 80:7378–7387. doi: 10.1128/AEM.01861-14 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Martinson VG, Danforth BN, Minckley RL et al (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 20:619–628. doi: 10.1111/j.1365-294X.2010.04959.x CrossRefPubMedGoogle Scholar
  13. 13.
    McFrederick QS, Wcislo WT, Taylor DR et al (2012) Environment or kin: whence do bees obtain acidophilic bacteria? Mol Ecol 21:1754–1768. doi: 10.1111/j.1365-294X.2012.05496.x CrossRefPubMedGoogle Scholar
  14. 14.
    McFrederick QS, Mueller UG, James RR (2014) Interactions between fungi and bacteria influence microbial community structure in the Megachile rotundata larval gut. Proc R Soc B B Sci 281:20132653CrossRefGoogle Scholar
  15. 15.
    McFrederick QS, Cannone JJ, Gutell RR et al (2013) Specificity between lactobacilli and hymenopteran hosts is the exception rather than the rule. Appl Environ Microbiol 79:1803–1812. doi: 10.1128/AEM.03681-12 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    McFrederick QS, Rehan SM (2016) Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Mol Ecol 25:2302–2311. doi: 10.1111/mec.13608 CrossRefPubMedGoogle Scholar
  17. 17.
    Anderson KE, Sheehan TH, Mott BM et al (2013) Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One 8:e83125. doi: 10.1371/journal.pone.0083125.s012 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vojvodic S, Rehan SM, Anderson KE (2013) Microbial gut diversity of Africanized and European honey bee larval instars. PLoS One 8:e72106. doi: 10.1371/journal.pone.0072106 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    McFrederick QS, Wcislo WT, Hout MC, Mueller UG (2014) Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees. FEMS Microbiol Ecol 88:398–406. doi: 10.1111/1574-6941.12302 CrossRefPubMedGoogle Scholar
  20. 20.
    Cane J (2006) The Logan Beemail shelter: a practical, portable unit for managing cavity nesting agricultural pollinators. Am Bee J 146:611–613Google Scholar
  21. 21.
    Sen R, Ishak HD, Estrada DA et al (2009) Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Natl Acad Sci 106:17805–17810CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Engel P, James RR, Koga R et al (2013) Standard methods for research on Apis mellifera gut symbionts. J Apic Res 52:1–24. doi: 10.3896/IBRA. CrossRefGoogle Scholar
  23. 23.
    Moran NA, Hansen AK, Powell JE, Sabree ZL (2012) Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One 7:e36393. doi: 10.1371/journal.pone.0036393.t005 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mattila HR, Rios D, Walker-Sperling VE et al (2012) Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS One 7:e32962. doi: 10.1371/journal.pone.0032962.t002 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi: 10.1093/bioinformatics/btq461 CrossRefPubMedGoogle Scholar
  27. 27.
    Kopylova E, Navas-Molina JA, Mercier C et al (2016) Open-source sequence clustering methods improve the state of the art. mSystems 1:e00003–15. doi:  10.1128/mSystems.00003-15
  28. 28.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi: 10.1128/AEM.00062-07 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    McDonald D, Price MN, Goodrich J et al (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618. doi: 10.1038/ismej.2011.139 CrossRefPubMedGoogle Scholar
  30. 30.
    Caporaso JG, Bittinger K, Bushman FD et al (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267. doi: 10.1093/bioinformatics/btp636 CrossRefPubMedGoogle Scholar
  31. 31.
    Maddison W, Maddison DR Mesquite: a modular system for evolutionary analysisGoogle Scholar
  32. 32.
    Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650. doi: 10.1093/molbev/msp077 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    R core development team R: a language and environment for statistical computingGoogle Scholar
  34. 34.
    Warnes GR, Bolker B, Bonebakker L et al (2015) gplots: various R programming tool for plotting dataGoogle Scholar
  35. 35.
    Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264. doi: 10.1093/biomet/40.3-4.237 CrossRefGoogle Scholar
  36. 36.
    Hamady M, Lozupone C (2009) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4:17–27CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Chen J, Bittinger K, Charlson ES et al (2012) Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics 28:2106–2113. doi: 10.1093/bioinformatics/bts342 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Oksanen J, Blanchet FG, Kindt R et al vegan: community ecology packageGoogle Scholar
  39. 39.
    Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinf 13:134. doi: 10.1016/0022-2836(70)90057-4 CrossRefGoogle Scholar
  40. 40.
    Turner S, Pryer KM, Miao VP, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338. doi: 10.1111/j.1550-7408.1999.tb04612.x CrossRefPubMedGoogle Scholar
  41. 41.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley & Sons, New York, NY, pp 115–175Google Scholar
  42. 42.
    De Man JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Microbiol 23:130–135. doi: 10.1111/j.1365-2672.1960.tb00188.x Google Scholar
  43. 43.
    Olofsson TC, Alsterfjord M, Nilson B et al (2014) Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int J Syst Evol Microbiol 64:3109–3119. doi: 10.1099/ijs.0.059600-0 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Benson DA, Cavanaugh M, Clark K et al (2013) GenBank. Nucleic Acids Res 41:D36–D42. doi: 10.1093/nar/gks1195 CrossRefPubMedGoogle Scholar
  45. 45.
    Koch H, Abrol DP, Li J, Schmid-Hempel P (2013) Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol Ecol 22:2028–2044. doi: 10.1111/mec.12209 CrossRefPubMedGoogle Scholar
  46. 46.
    Huang Y, Niu B, Gao Y, Fu L (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nováková E, Hypša V, Moran NA (2009) Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol 9:143. doi: 10.1186/1471-2180-9-143 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi: 10.1093/bioinformatics/btl446 CrossRefPubMedGoogle Scholar
  49. 49.
    Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Enviropnments. New Orleans, LA, pp 1–8Google Scholar
  50. 50.
    Anderson KE, Carroll MJ, Sheehan T et al (2014) Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol Ecol 23:5904–5917. doi: 10.1111/mec.12966 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Corby-Harris V, Maes P, Anderson KE (2014) The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS One 9:e95056CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Edwards C, Haag K, Collins M et al (1998) Lactobacillus kunkeei sp. nov.: a spoilage organism associated with grape juice fermentations. J Appl Microbiol 84:698–702CrossRefPubMedGoogle Scholar
  53. 53.
    Corby-Harris V, Snyder LA, Schwan MR et al (2014) Origin and effect of alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. nov., sp. nov. Appl Environ Microbiol 80:7460–7472. doi: 10.1128/AEM.02043-14 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Graystock P, Goulson D, Hughes WOH (2015) Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc R Soc B Biol Sci 282:20151371. doi: 10.1098/rspb.2015.1371 CrossRefGoogle Scholar
  55. 55.
    Finlay BJ, Fenchel T (2004) Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist 155:237–244CrossRefPubMedGoogle Scholar
  56. 56.
    Lindemann J, Constantinidou HA, Barchet WR, Upper CD (1982) Plants as sources of airborne bacteria, including ice nucleation-active bacteria. Appl Environ Microbiol 44:1059–1063PubMedPubMedCentralGoogle Scholar
  57. 57.
    University of California IPM (2013) Floriculture & ornamental nurseries. In: University of California Agriculture and Natural Resources Publication 3392. Accessed 19 May 2015
  58. 58.
    Durrer S, Schmid-Hempel P (1994) Shared use of flowers leads to horizontal pathogen transmission. Proc R Soc B Biol Sci 258:299–302CrossRefGoogle Scholar
  59. 59.
    Ushio M, Yamasaki E, Takasu H et al (2015) Microbial communities on flower surfaces act as signatures of pollinator visitation. Sci Rep 5:8695. doi: 10.1038/srep08695 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Aizenberg-Gershtein Y, Izhaki I, Halpern M (2013) Do honeybees shape the bacterial community composition in floral nectar? PLoS One 8:e67556. doi: 10.1371/journal.pone.0067556 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Klostermeyer EC, Mech SJ Jr, Rasmussen WB (1973) Sex and weight of Megachile rotundata (Hymenoptera: Megachilidae) progeny associated with provision weights. J Kansas Entomol Soc 46:536–548Google Scholar
  62. 62.
    Kwong WK, Moran NA (2015) Evolution of host specialization in gut microbes: the bee gut as a model. Gut Microbes 6:214–220. doi: 10.1080/19490976.2015.1047129 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kwong WK, Engel P, Koch H, Moran NA (2014) Genomics and host specialization of honey bee and bumble bee gut symbionts. PNAS 111:11509–11514. doi: 10.1073/pnas.1405838111 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kwong WK, Moran NA (2013) Cultivation and characterization of the gut symbionts of honey bees and bumble bees: Snodgrassella alvi gen. nov., sp. nov., a member of the Neisseriaceae family of the Betaproteobacteria; and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the Enterobacteriales order of the Gammaproteobacteria. Int J Syst Evol Microbiol 63:2008–2018. doi: 10.1099/ijs.0.044875-0 CrossRefPubMedGoogle Scholar
  65. 65.
    Gerth M, Saeed A, White JA, Bleidorn C (2015) Extensive screen for bacterial endosymbionts reveals taxon-specific distribution patterns among bees (Hymenoptera, Anthophila). FEMS Microbiol Ecol 91:fiv047–fiv047. doi: 10.1093/femsec/fiv047 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Quinn S. McFrederick
    • 1
    Email author
  • Jason M. Thomas
    • 2
  • John L. Neff
    • 3
  • Hoang Q. Vuong
    • 4
  • Kaleigh A. Russell
    • 1
  • Amanda R. Hale
    • 4
  • Ulrich G. Mueller
    • 5
  1. 1.Department of EntomologyUniversity of CaliforniaRiversideUSA
  2. 2.Department of BiologyCalifornia State UniversityFresnoUSA
  3. 3.Central Texas Melittological InstituteAustinUSA
  4. 4.Microbiology Graduate ProgramUniversity of CaliforniaRiversideUSA
  5. 5.Department of Integrative BiologyUniversity of TexasAustinUSA

Personalised recommendations